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Restoration of historic sound recordings:

e Phonograph Cylinders and their Copies [Mach 2012]
Motvaton e Gramophone Records [Rajmic, Klimek 2004]
e Magnetic Tapes

Mach, Rajmic

e Oldest Compact Discs
Actual recordings:
e Amateurs using professional sound equipment
e Encoding errors
e VolP packet drop-outs
Unsuitable for archiving but recommended for publishing!
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. AR methods and related

for Audio
Inpainting

PSRN  State-of-the-art methods for audio interpolation

e Based on AR modelling of time samples (extrapolation)
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AR methods X[I] = 2 aJ'X[i _J] + U[i]7
j=1

e And crossfading of extrapolated parts
e [Janssen 1986], [Etter 1996] etc.

Interpolation of partials from sinusoidal modelling
o [Lagrange et al. 2005], [Lukin, Todd 2008]
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Additive model of signal y

Mach, Rajmic
y=Dx or y~Dx

e known vector y € C™ (measurement, signal)

matrix D e C™N m < N, full column-rank (atoms, dictionary)

infinitely many solutions of equations y = Dx
We want the sparsest possible, i.e.

AR methods

min [x[o subject to Dx =y (P0)

But how to find it?
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o Audio inpainting

minimization

for Audio
Inpainting
Mach, Rajmic e Novel method for missing/distorted signal interpolation [Adler et al., 2012]
e Obtaining signal coefficients from "reliable" samples and reduced dictionary
e Restoration of missing samples with full dictionary
AR methods

Missing signal
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Mach, Rajmic
LASSO - Least Absolute Shrinkage and Selection Operator [Tibshirani 1996]
~m m . 1 r r 2
y" = M™D - argmin | =||[M"Dc — M"x||5 + A||c|1
Convex relaxation ceRN 2

M. .. diagonal matrix, selection of 'reliable’ dictionary atoms

M™ .. diagonal matrix, selection of 'missing’ dictionary atoms

D...synthesis operator

e x...measured signal (with gaps)

y™. .. missing samples estimation

c. .. coefficient vector



-

minimization Sparse Modeling
for Audio
Inpainting
o, Ramie LASSO Solver: Proximal splitting algorithm
e Splits the optimization problem into two separate problems
~ |1
y" = M™D -argmin [ Z||M'Dc — M'x||3 + \|[c||,
xeCN 2 ~—
Convex relaxation ;—; fl

e f» is differentiable — Forward-Backward algorithm
Incorporating of weights for depleted atoms/coefficients
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NOT Using weights: SNR= 0.9342dB

Audio inpainting; fi

: music08_16kHz; gaps: 1; solver: I1_synthesis_ub
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Using weights: SNR= —0.8793dB

Audio inpainting; file: music08_16kHz; gaps: 1; solver: I11_synthesis_ub
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Mach, Rajmic

e Sparse representations in audio inpainting problem are beneficial

Toolbox for Matlab developement

Experiments

Structured sparsity - persistency in time and/or frequency

Analysis model - currently experimenting with several algoritms

Complex testing on musical recordings of various genres

Subjective evaluation



Thank you for your attention!
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