Mach, Rajmi

Introduction

Motivation

AR methods

modelling

Experiments

ℓ_1 -minimization for Audio Inpainting

Václav MACH with Pavel RAJMIC, Zdeněk PRŮŠA, Nicki HOLIGHAUS

4th SPLab Workshop 2014

Mach, Rajmie

Introduction

Motivation

AR method

modelling

Convex relaxation

Experiments

1 Introduction Motivation

2 AR methods

3 Sparse modelling
Convex relaxation

4 Experiments

Mach, Rajmic

Introductio Motivation

AR method

Sparse modelling Convex relaxati

Experiment

Restoration of historic sound recordings:

- Phonograph Cylinders and their Copies [Mach 2012]
- Gramophone Records [Rajmic, Klimek 2004]
- Magnetic Tapes
- Oldest Compact Discs

Actual recordings:

- Amateurs using professional sound equipment
- Encoding errors
- VoIP packet drop-outs

Unsuitable for archiving but recommended for publishing!

Mach, Rajmic

Introduction

Motivation

AR methods

Sparse modelling Convex relaxation

Experiments

State-of-the-art methods for audio interpolation

• Based on AR modelling of time samples (extrapolation)

$$x[i] = \sum_{i=1}^{k} a_j x[i-j] + u[i],$$

- And crossfading of extrapolated parts
- [Janssen 1986], [Etter 1996] etc.

Interpolation of partials from sinusoidal modelling

• [Lagrange et al. 2005], [Lukin, Todd 2008]

Sparse representation of signals

Mach Raimic

Introductio Motivation

AR methods

Sparse modelling Convex relaxation

Experiment

• Additive model of signal **y**:

$$\mathbf{y} = \mathbf{D}\mathbf{x}$$
 or $\mathbf{y} \approx \mathbf{D}\mathbf{x}$

- known vector $\mathbf{y} \in \mathbb{C}^m$ (measurement, signal)
- matrix $\mathbf{D} \in \mathbb{C}^{m \times N}$, m < N, full column-rank (atoms, dictionary)
- infinitely many solutions of equations $\mathbf{y} = \mathbf{D}\mathbf{x}$
- We want the sparsest possible, i.e.

$$\min_{\mathbf{x}} \|\mathbf{x}\|_{0} \quad \text{subject to} \quad \mathbf{D}\mathbf{x} = \mathbf{y}$$
 (P0)

But how to find it?

 ℓ_1 minimization
for Audio
Inpainting

Mach, Rajmio

Introduction

Motivation

AR methods

Sparse modelling

Experiments

- Novel method for missing/distorted signal interpolation [Adler et al., 2012]
- Obtaining signal coefficients from "reliable" samples and reduced dictionary
- Restoration of missing samples with full dictionary

AR method

modelling
Convex relaxation

Experiment

LASSO - Least Absolute Shrinkage and Selection Operator [Tibshirani 1996]

$$\widehat{\mathbf{y}}^{\mathsf{m}} = \mathbf{M}^{\mathsf{m}} \mathbf{D} \cdot \arg\min_{\mathbf{c} \in \mathbb{R}^{\mathcal{N}}} \left(\frac{1}{2} \| \mathbf{M}^{\mathsf{r}} \mathbf{D} \mathbf{c} - \mathbf{M}^{\mathsf{r}} \mathbf{x} \|_{2}^{2} + \lambda \| \mathbf{c} \|_{1} \right)$$

- Mr... diagonal matrix, selection of 'reliable' dictionary atoms
- M^m... diagonal matrix, selection of 'missing' dictionary atoms
- D. . . synthesis operator
- x... measured signal (with gaps)
- $\hat{\mathbf{y}}^{m}$... missing samples estimation
- c. . . coefficient vector

Mach, Rajmio

Introductio

AR methods

modelling

Convex relaxation

Experiment

LASSO Solver: Proximal splitting algorithm

• Splits the optimization problem into two separate problems

$$\widehat{\mathbf{y}}^{m} = \mathbf{M}^{m} \mathbf{D} \cdot \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{C}^{N}} \left(\underbrace{\frac{1}{2} \| \mathbf{M}^{r} \mathbf{D} \mathbf{c} - \mathbf{M}^{r} \mathbf{x} \|_{2}^{2}}_{f_{2}} + \underbrace{\lambda \| \mathbf{c} \|_{p}}_{f_{1}} \right).$$

• f_2 is differentiable \rightarrow Forward-Backward algorithm Incorporating of weights for depleted atoms/coefficients

$$\mathbf{w}_i = \|\mathbf{g}\|_2^2 - \frac{|\mathbf{m}^{\mathsf{m}} * \mathbf{g}|_i}{\|\mathbf{g}\|_2}$$

 $\begin{array}{c} \ell_1\text{-}\\ \text{minimization}\\ \text{for Audio}\\ \text{Inpainting} \end{array}$

Mach. Raimie

Introduction
Motivation

AR method

Sparse modelling

Experiments

NOT Using weights: SNR= 0.9342 dB

 $\begin{array}{c} \ell_1\text{-}\\ \text{minimization}\\ \text{for Audio}\\ \text{Inpainting} \end{array}$

Mach, Rajmie

Introduction

AR method

Sparse modelling

Experiments

Using weights: $SNR = -0.8793 \, dB$

Mach, Rajmie

Introduction
Motivation

AR method

modelling

Experiments

- Sparse representations in audio inpainting problem are beneficial
- Toolbox for Matlab development
- **Structured sparsity** persistency in time and/or frequency
- Analysis model currently experimenting with several algoritms
- Complex testing on musical recordings of various genres
- Subjective evaluation

 ℓ_1 minimization
for Audio
Inpainting

Mach, Rajmio

Introduction

AR method:

modelling

Convex relaxation

Experiments

Thank you for your attention!