
Perfect reconstruction transforms in
the

(Large Time Frequency Analysis Toolbox)

Zdeněk Pr̊uša 21.11.2014

1 / 15

LTFAT is

I ... Matlab/Octave toolbox for working with time-frequency
analysis and synthesis.

I ... currently in version 2.0.0.

I ... baby of Peter L. Søndergaard since 2004.

I ... ∼52k lines of code, 60% Matlab , 27% C, 8% C++, and
bit of java JAVA etc., exctuding thirdparty code and
comments.

I ... an official GNU Octave package since 1.4.2.
octave:1>pkg install -forge ltfat

Currently also available as a Debian (Jessie) package.
$sudo apt-get install octave-ltfat

I ... downloaded 80 times per week on average.

I ... free software (in both meanings).

I and is celebrating 10th aniversary this year!

2 / 15

LTFAT is unique because

I ... uses frame theory as the underlying mathematical
abstraction
⇒ perfect reconstruction.
⇒ modification of coefficients (e.g. frame multiplier).

I ... contains a plethora of TF transforms: DGT, NSDGT,
Discrete Wavelets, filterbanks, CQT, Erblets etc.

I ... uses fast algorithms whenever possible. Implementations in
both Matlab and C.

I ... provides unified programming interface for working with
different types of frames in CL (NO explicit matrices).

I ... allows doing real-time audio processing directly from
Matlab and Octave.

3 / 15

(Show something before everyone leaves....)

DEMO

4 / 15

Talk Overview

I Frames framework
I Allows working with different types of frames in a uniform

manner.
I Exploits fast algorithms whenever possible.
I Avoids explicit creation of matrices.

I Block processing in LTFAT
I Makes real-time audio in Matlab and Octave possible.
I Integrated with the frames framework.
I Provides real-time visualization and controlling tools.

5 / 15

Frames framework – Basic usage

1 Create a frame object of the chosen type. Not fixed L.

2 Use analysis and synthesis operators: frana, frsyn.

3 (Optional) Investigate it’s properties: framered,
framebounds, frsynmatrix.

4 (Optional) Change format of coefficients:
framecoef2native, framenative2coef

Example:

F = frame(’dgtreal’,’gauss’,10,1000);

c = frana(F,greasy);

plotframe(F,c,’dynrange’,60);

vs.

c = dgtreal(f,’gauss’,10,1000);

plotdgt(c,10,’dynrange’,60);

6 / 15

Frames framework – How to reconstruct

I Create a dual frame:

Fd = (FF∗)−1F, then FF∗
d = FdF

∗ = I

and use it’s synthesis operator Fd = framedual(F)

I Create a (Parseval) tight frame:

Ft = (FF∗)−
1
2F, then FtF

∗
t = I

and use it for both analysis and synthesis.
Ft = frametight(F).

I What if a dual frame with the same structure cannot be
created? Iterative inversion of the frame operator:
franaiter, frsyniter

7 / 15

franabp – frame analysis as a basis pursuit problem

Basis pursuit problem:

argmin
c
||λc ||1, subject to Fc = f (1)

Split Augmented Lagrangian Shrinkage Algorithm – SALSA

1 Initialize c , d , µ, λ
2 repeat

I v ← soft
(
c + d , λµ

)
− d

I d ← F∗(FF∗)−1(f − Fv)
I c ← d + v

3 end

In LTFAT:
c = franabp(F,f,lambda);

8 / 15

franalasso – frame analysis as a LASSO problem

LASSO or Basis pursuit denoising problem:

argmin
c
||λc||1 +

1

2
||Fc − f ||22 (2)

Iterative Soft Thresholding Algorithm – ISTA

1 Initialize c , µ, λ
2 repeat until stopping criterion is met

I c ← soft
(
c + 1

µF
∗(f − Fc), λµ

)
In LTFAT (actually doing the Fast ISTA):

c = franalasso(F,f,lambda);

9 / 15

frsynabs – synthesis without a phase

Problem
Find f knowing s = |F∗f |.

Griffin-Lim algorithm

1 Initialize c = s
2 repeat until stopping criterion is met

I c ← s · exp(i arg(F∗(FF∗)−1Fc))

3 f = (FF∗)−1Fc

4 end

In LTFAT:
f = frsynabs(F,c);

10 / 15

Block processing routines

Build on top of:

I Portaudio – a free, open-source, audio I/O C/C++ library.
An uniform way of working with audio I/O across operating
systems. http://www.portaudio.com

I Playrec – a MEX file providing an interface from Matlab to
Portaudio. http://github.com/PlayrecForMatlab

Simple use:

block(’playrec’);

p = blockpanel({’GdB’,’Gain’,-20,20,0,21});

while p.flag

gain = blockpanelget(p,’GdB’);

f = blockread();

blockplay(f*10^(gain/20));

end

blockdone(p);

11 / 15

http://www.portaudio.com
http://github.com/PlayrecForMatlab

Options

source in block(source); may be:

I ’file.wav’ name of a wav file

I ’dialog’ shows the file dialog to choose a wav file.

I ’rec’ input is taken from a microphone/auxilary input;

I ’playrec’ loopbacks the input to the output

I data input data as columns of a matrix for each input channel

block(...,’outfile’,’outfile.wav’); together with
blockwrite performs on-the-fly writing to a file.
block(...,’offline’); for offline processing.
Specifying system devices and channels.

12 / 15

Delay and limitations

Sources of delay (assuming 44.1 kHz):

I In the system driver itself; ranges 5ms–100ms.

I Introduced by the block length; ∼23 ms for 1024 samples.

I Processing delay, when doing e.g. DGT analysis and synthesis
∼ length of the window.

Limitations

I Cannot use much shorter block lengts.

I Everything has to be done in less than ∼23 ms ...

We can choose to use lower (non-native) sampling rate, but that
usually means higher delay in system.

13 / 15

Block processing and frames framework together

Conceptually:

% Initialize block, F = frame(..), Fd = framedual(F)

while flag

f = blockread();

c = blockana(Fd,f);

% Process c

blockplot(c);

fhat = blocksyn(F,c);

blockplay(fhat);

end

Problems:

I Is it fast enough?

I How to handle blockwise analysis and synthesis?

14 / 15

Handling blockwise analysis and synthesis
I Naive approach – do analysis and synthesis with the current

block only.
+ Works for any frame (provided it is fast enough).
+ No additional delay.
− Coefficients are different.
− Any coefficient modification will produce horrible blocking

aftifacts.
I Slicing window (metawindow) – another layer of weighted and

overlapped blocks.
+ Works for any frame (provided it is fast enough).
+ Blocking artifacts reduced.
− Modifying and plotting coefficients is not straightforward.

I Overlap Add/Save – known compact support of atoms can be
exploited to do a proper overlapping.

− Works only for (some) frames with compactly supported
windows/filters.

+ Blocking artifacts completely avoided.
+ Straightforward modifycation and plotting of coefficients.

15 / 15

