Utilization of compressed sensing in perfusion MRI

Marie Daňková

4th SPLab Workshop

20th November 2014

Perfusion imaging

30 35

10

Time (sec)

Injection

Lognormal model

Sparse representation of signals

• model of signal y:

$$\mathbf{y} = \mathbf{A}\mathbf{x}$$

infinitely many solutions of this equations

Sparse representation of signals

• We want the sparsest possible, i.e.

$$\min_{\mathbf{x}} \|\mathbf{x}\|_0$$
 subject to $\mathbf{A}\mathbf{x} = \mathbf{y}$ (P0)

ℓ_1 -relaxation

relaxed problem

$$\min_{\mathbf{x}} \|\mathbf{x}\|_1 \quad \text{subject to} \quad \mathbf{A}\mathbf{x} = \mathbf{y}. \tag{P1}$$

Compressed sensing

- acceleration of the measurement
- longer computation time

a priori information

- sparsity of perfusion curve spectrum
- -low rank matrix of video data

measurement

Compressed sensing

• CS problem: $\tilde{\mathbf{x}} := \arg\min \|\mathbf{x}\|_0 \quad \text{subject to} \quad \mathbf{y} = \overbrace{\mathbf{R} \Phi \ \mathbf{\Psi} \mathbf{x}}^{\mathbf{A}} \qquad (\text{P1U})$

- Ψ is orthonormal basis for signal z, coordinates x are sparse
- Φ matrix $N \times N$ (in MRI Fourier transform)
- **R** is random matrix performing selection of *m* rows (in MRI trajectory in k-space)

L+S model

Simulation

perfusion phantom - video

Measurement matrices

Random mask

Radial halflines

THANK YOU FOR YOUR ATTENTION

References

- R. Otazo, E. J. Candès and D. Sodickson. Low-rank and sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. Submitted to *Magnetic Resonance in Medicine*, Sept. 2013.
- V. Harabis, R. Kolar, M. Mezl, R. Jirik. Comparison and Evaluation of Indicator Dilution Models for Bolus of Ultrasound Contrast Agents. Physiol Meas. 2013, 34(2)
- M. Mézl, R. Jiřík, V. Harabiš. Acquisition and data processing in the ultrasound perfusion analysis (in Czech) In New trends in biomedical engineering. Brno university of technology 2013, ISBN 978-80-214-4814-8.
- P. L. Combettes, J.-C. Pesquet. Proximal Splitting Methods in Signal Processing. Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer, 2011.

References

- Lustig, Donoho, Santos, Pauly: Compressed Sensing MRI, IEEE Signal Processing Magazine, 2008
- Bruckstein, Donoho, Elad: From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images, SIAM Review, 2009
- Candés, Wakin: An Introduction to Compressive Sampling, IEEE, 2008
- http://fmri.mchmi.com
- http://spinwarp.ucsd.edu/neuroweb/Text/br-710epi.htm