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Linear regression

Let x1, . . . , xN ∈ Rd be N points in Rd and y1, . . . , yN ∈ R

Briefly: X ∈ RN×d , y ∈ RN : yi ≈ f (xi )

Linear regression - least squares (Gauss, Legendre):
yi ≈

∑d
j=1 αjXij

argmin
α∈Rd

‖y − Xα‖2
2

typically, all coordinates of α are non-zero

Regularized linear regression:

argmin
α∈Rd

‖y − Xα‖2 + λ‖α‖2

weights between error and size of α
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`1-based methods

Feature selection (Tibshirani, 1996)
LASSO (least absolute shrinkage and selection operator)

argmin
α∈Rd

‖y − Xα‖2 + λ‖α‖1, where ‖α‖1 =
∑
j

|αj |

Tends to produce sparse solutions α ∈ Rd

λ > 0 - regularization parameter

λ ≥ λ0: α = 0

λ→ 0: α goes to least square solution
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LASSO in Bioinformatics

I with Tim Conrad, Christoff Schütte (FU Berlin), Gitta
Kutyniok (TU Berlin)

I Early diagnosis of a disease - from blood samples!

I Mass Spectrometry - snap shot of proteome

I Very noisy data
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x1, . . . , x100 ∈ R40000 100 healthy patients

x101, . . . , x200 ∈ R40000 100 sick patients

X ∈ R200x40000, y1 = · · · = y100 = 1 and y101 = · · · = y200 = −1

(with and without baseline)
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I Methods are first tested on synthetic data (with limited
amount of artificial and controlled noise)

I Different methods of preprocessing used

I Success rate tested by leave-some-out cross validation

I Rates above 90%, depend on the number of features (ca.
20-50)

I Extensive tests would be necessary (more data points)
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Effect of λ > 0 on the support of ω
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LASSO in Material Science

with Luca M. Ghiringhelli, Matthias Scheffler,
Sergey Levchenko (FHI Berlin) and Claudia Draxl (Humboldt U. Berlin)
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Classification problem in material science

Task: Given two atoms (i.e. Na & Cl) decide their crystal structure
- Zinc blende (ZB) or Rock salt (RS)

Common features: Two atom types form two interpenetrating
face-centered cubic lattices

Differences: Relative position of these two lattices. ZB/RS: Each
atom’s nearest neighbors consist of four/six atoms of the opposite
type

Wurtzite: Crystal type very similar to zincblende, materials usually
take both the structures depending on conditions

Classification: Given two elements, it is surprisingly hard to
predict, which structure they take!
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Crystals

NaCl - rocksalt:
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Crystals

ZnS - zinc blende:
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Data sets

I 82 compounds of the type AB (NaCl, MgS, AgI, CC, . . . )

I X - 82x2 matrix (columns ZA,ZB)

I y - 82x1 vector of +1,-1

I =⇒ classification problem in R2
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Essentially no machine learning tool can learn such a function from
82 data points only
We replace y by ∆ and want to learn ∆(AB) = f (ZA,ZB)
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Reduced task - learn ∆ from atomic quantities!

I Properties of single atoms

I Easier to calculate

I rs(A), rp(A), rs(B), rp(B) - orbital radii

I IP(A),EA(A), IP(B),EA(B) - ionization potentials,
electroaffinity

I HOMO(A), LUMO(A), HOMO(B), LUMO(B) - energy of
Highest Occupied Molecular Orbital and
Lowest Unoccupied Molecular Orbital

I . . . primary features!
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Example 1: Phillips, van Vechten (1969, 1970)
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Example 2: Zunger (1980)
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Beyond classical data analysis

We construct first physically meaningful quantities:
design of a new, physically motivated kernel

Secondary features - i.e. 1/rp(A)2, (rs(A)− rp(A))/rp(B)3, etc.

We let LASSO find the best candidates

Due to large coherences (rs(A) ≈ rp(A),. . . ) the selection needs to
be stabilized and/or iterated

18 / 49



LASSO
Compressed Sensing

Connections in EE - further applications

LASSO
LASSO in Bioinformatics
LASSO in Material Science
Bioinformatics revised

Results

We found the descriptors

IP(B)− EA(B)

rp(A)2
,
|rs(A)− rp(B)|

exp(rs(A))
,
|rp(B)− rs(B)|

exp(rd(A) + rs(B))
, . . .

Physically reasonable quantities

Goal (for the material science people): Do these descriptors lead to
new physics? - Unfortunately, not yet
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Results

Descriptors found:
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Results

Error of a linear fit:
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Support Vector Machine

For {x1, . . . , xm} ⊂ RN and {y1, . . . , ym} ⊂ {−1, 1},
the Support Vector Machine wants to separate the sets

{xi : yi = −1} and {xi : yi = +1}

by a linear hyperplane, i.e. finds w ∈ RN and b ∈ R with

〈w , xi 〉 − b > 0 for yi = 1,
〈w , xi 〉 − b < 0 for yi = −1.

It maximizes the size of the margin around the separating
hyperplane.
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Support Vector Machine

min
w∈RN

m∑
i=1

(1− yi 〈w , xi 〉)+ + λ‖w‖2
2

λ > 0 - a parameter
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We want separation based on few coordinates!

1. We want good separation =⇒ good diagnosis

2. The position of non-zero coordinates should explain the
science behind

`1-SVM replaces ‖w‖2
2 by ‖w‖1 - promotes the sparsity of w !

Zhu, Rosset, Hastie and Tibshirani (2003)

In bioinformatics: the (few) non-zero components of a sparse w
are the “markers” of a disease =⇒ causality!?!
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. . . mathematics of LASSO?!?
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Sparse recovery

“Simplest” equation in mathematics:
y = Ax for (known) m × N matrix A and y ∈ Rm

Task: recover x ∈ RN from y

Studied from many points of view:
Linear algebra: existence, uniqueness
Numerical analysis: stability, speed
Special methods for structured matrices A

“New” point of view:
. . . we look for a solution x with special structure!
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The world is compressible!

Natural images can be sparsely represented by wavelets!. . . JPEG2000

. . . today, we measure all the data (megapixels, i.e. millions), to
throw the most of them away!

27 / 49



LASSO
Compressed Sensing

Connections in EE - further applications

Sparse recovery
Notions and results
Sensing Matrices
Stability, robustness

Setting of Compressed Sensing

Simplified situation:

Let A be an m × N matrix, and let x ∈ RN be sparse,
i.e. with ‖x‖0 := #{i : xi 6= 0} small.

Recover x from y = Ax.

Natural assumption:
Given x ∈ RN . By experience, we “know” (i.e. expect) that there
exists an orthonormal basis Φ with x = Φc such that c is sparse

Task:
Let A be an m × N matrix, let x = Φc ∈ RN with Φ an ONB

and ‖c‖0 small. Recover x from y = AΦc.
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Natural minimization problem: Given an m × N matrix A and
y ∈ Rm, solve

min
x
‖x‖0 subject to y = Ax

This minimization problem is NP-hard!

‖x‖p =
( N∑
j=1

|xj |p
)1/p

:

{
p ≤ 1− promotes sparsity

p ≥ 1− convex problem

Basis pursuit (`1-minimization; Chen, Donoho, Saunders - 1998):

min
x
‖x‖1 subject to y = Ax

−→ This can be solved by linear programming!
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`1 promotes sparsity

{x : y = Ax}

min ‖x‖2 s.t. y = Ax

min ‖x‖1 s.t. y = Ax

red: x2
1 + x2

2 ≤ α blue: |x1|+ |x2| ≤ β
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(a) Logan-Shepp phantom, (b) Sampling Fourier coef. along 22 radial lines,
(c) `2 reconstruction, (d) total variation minimization

Source: Candès, Romberg, Tao
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Null Space Property

Definition:
A ∈ Rm×N has the Null Space Property (NSP) of order s if

‖1Λh‖1 <
1
2‖h‖1 for all h ∈ kern (A) \ {0} and for all #Λ ≤ s.

Theorem (Cohen, Dahmen, DeVore - 2008):
Let A ∈ Rm×N and s ∈ N. TFAE:

(i) Every x ∈ Σs is the unique solution of

min
z
‖z‖1 subject to Az = y ,

where y = Ax .

(ii) A satisfies the null space property of order s.
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Restricted Isometry Property

Definition:
A ∈ Rm×N has the Restricted Isometry Property (RIP) of order s
with RIP-constant δs ∈ (0, 1) if

(1− δs)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δs)‖x‖2
2 ∀x ∈ Σs .

Theorem (Cohen, Dahmen, DeVore - 2008; Candès - 2008):
Let A ∈ Rm×N with RIP of order 2s with δ2s < 1/3. Then A has
NSP of order s.
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Directions

Situation:
Given an m × N matrix A and an s-sparse x ∈ RN ,

recover x from y = Ax!

Fundamental (theoretical) questions:

I What is the minimal number m = m(s,N) of measurements?

I For which sensing matrices is the task (uniquely) solvable?

I “Good” algorithms for recovery of x?

I Stability - i.e. “nearly sparse” x ’s?

I Robustness - i.e. noisy measurements?
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Sensing matrices

Random matrices (Candès, Donoho, et al.; 2006–2011)
Let A be an m × N-matrix with independent (sub)-gaussian
entries. If

m ≥ Cδ−2s log(N/s),

then A satisfies the RIP of order s with δs ≤ δ with prob. at least

1− 2 exp(−cδ2m) ‘overwhelmingly high probability’.

Optimality (through high-dimensional geometry):
Stable recovery of s-sparse vectors is possible only for
m ≥ Cs log(N/s).
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Stability, robustness

The theory can be easily generalized to include

I stability (x not sparse but compressible) and

I robustness (measurements with noise)

Let y = Ax + e, ‖e‖2 ≤ η, where A has the Robust Null Space
Property of order s. Then

x# := arg min
x
‖x‖1 subject to ‖Ax − y‖2 ≤ η

satisfies
‖x − x#‖1 ≤ Cσs(x)1 + D

√
s η

and

‖x − x#‖2 ≤
C√

s
σs(x)1 + Dη.
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“Matrix completion”, or low-rank matrix recovery

The theory applies to other sorts of sparsity!
x sparse means, that some (unknown) of its possible degrees of
freedom are not used (i.e. equal to zero)

The same is true for low-rank matrices!

E. Candès and T. Tao. The power of convex relaxation: near-optimal matrix
completion, IEEE Trans. Inform. Theory, 56(5), pp. 2053 - 2080 (2010)

E. Candès and B. Recht. Exact matrix completion via convex optimization,
Found. of Comp. Math., 9 (6). pp. 717-772 (2009)

D. Gross, Recovering low-rank matrices from few coefficients in any basis, IEEE

Trans. Inform. Theory 57(3), pp. 1548-1566 (2011)
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Low-rank matrix recovery

Let X ∈ Cn1×n2 be a matrix of rank at most r .
Let y = A(X ) ∈ Cm be the (linear) measurements of X .

We “want” to solve

arg min
Z∈Cn1×n2

rank(Z ) s.t. A(Z ) = y .

rank(Z ) = ‖(σ1(Z ), σ2(Z ), . . . )‖0 gets replaced by
the nuclear norm ‖Z‖∗ = ‖(σ1(Z ), σ2(Z ), . . . )‖1 =

∑
i |σi (Z )|.

The convex relaxation is then

arg min
Z∈Cn1×n2

‖Z‖∗ s.t. A(Z ) = y .
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Separating features in video’s

Some videos (security cameras) can be divided into two parts
- background (= “low rank” component)
- movements (= “sparse” component)

The “intuitive” program

arg min
L,S

(rankL + λ‖S‖0), s.t. L + S = X .

gets replaced by a convex program

arg min
L,S

(‖L‖∗ + λ‖S‖1), s.t. L + S = X .

E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust Principal Component
Analysis?, Journal of ACM 58(1), 1-37 (2009)

Data from S. Becker (Caltech)
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Separating features in video’s: Example

Advanced Background Subtraction

First row:

Left: original image
Middle: low-rank (i.e. predictable) component
Right: sparse component

Second row: similar, quantization effects taken into account, i.e.
another term with Frobenius norm added.

40 / 49



LASSO
Compressed Sensing

Connections in EE - further applications

Matrix completion
Data separation
Phase retrieval
MRI

Phase retrieval

Setting:
Reconstruct the signal x from the magnitude of its discrete Fourier
transform x̂

General setting:
x given, bk = |〈ak , x〉|2, k = 1, . . . ,m known, recover x!

Frequent problem (i.e. astronomy, crystallography, optics),
different algorithms exist...

PhaseLift:
quadratic measurements of x are “lifted up” and become linear
measurements of the matrix X := xx∗:

|〈ak , x〉|2 = Tr(x∗aka∗kx) = Tr(aka∗kxx∗) = Tr(AkX ) = 〈Ak ,X 〉F ,

where Ak := aka∗k
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Exchanging Fourier phase while keeping the magnitude
picture: Osherovich
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PhaseLift

The “intuitive” problem

find X
subject to (Tr(AkX ))mk=1 = (bk)mk=1

X ≥ 0
rank(X ) = 1

gets replaced by a “convex” problem

minimize rank(X) ‖X‖∗
subject to (Tr(AkX ))mk=1 = (bk)mk=1

X ≥ 0.

. . . Matrix recovery problem!
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Results

E. Candès, Y. Eldar, T. Strohmer, and V. Voroninski. Phase retrieval via
matrix completion. SIAM J. on Imaging Sciences 6(1), pp. 199–225, 2011
E. Candès, T. Strohmer and V. Voroninski. PhaseLift: Exact and stable signal
recovery from magnitude measurements via convex programming. Comm. Pure
and Appl. Math. 66, pp. 1241–1274, 2011

E. Candès and X. Li. Solving quadratic equations via PhaseLift when there are

about as many equations as unknowns. To appear in Found. of Comp. Math.

Theorem (Candès, Li, Strohmer, Voroninski, 2011)
If ak ’s are chosen independently on the sphere and m ≥ CN (not
N log N!), then the unique solution of the convex problem is
X = xx∗ with high probability.

The reconstruction is robust w.r.t. noise!
Version for x sparse!
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Implementation of random measurements
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Magnetic Resonance Imaging

MRI exhibits several important features, which suggest using CS:

1. MRI images are naturally sparse (in an appropriate transform
and domain).

2. MRI scanners acquire encoded samples, rather than direct pixel
samples.

3. Sensing is “expensive” (damage to patient, costs).

4. Processing time does not play much role.

MRI applies additional magnetic fields on top of a strong static
magnetic field. The signal measured s(t) is the Fourier transform
of the object sampled at certain frequency k̄(t).
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How to choose the frequencies, to allow for fast and high-quality
recovery?

Different shapes in the k space correspond to sampling of different
Fourier coefficients
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Literature

I S. Foucart and H. Rauhut, A mathematical introduction to
compressive sensing, Birkhäuser/Springer 2013

I Recent, but standard textbook
I Detailed presentation

I H. Boche, R. Calderbank, G. Kutyniok, and J. V., A Survey of
compressed sensing, Birkhäuser/Springer, to appear.

I Short survey
I 25 pages of basic theory
I 15 pages of extensions
I The most important proofs simplified as much as possible
I Freely available

I Video-lecture of E. Candès from ICM 2014, available on
youtube
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Thank you for your attention!
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