*-lets for everybody: Define your own transform

Christoph Wiesmeyr
joint work with Nicki Holighaus

November 1st, 2013

Where I am from

NuHAG: Numerical Harmonic Analysis Group, headed by Hans G. Feichtinger
2 Professors, 7 Post-Docs, 6 PhD Students

Where is the starlet?

Here is the starlet:
http://tinyurl.com/wits-wavelets-starlet

We will discuss: Wavelets, ERB-lets and a flexible method to construct your own *-let

Filter banks, NSGT systems

Translation: $T_{x} f(I)=f(I-x)$
Modulation: $M_{\xi} f(I)=e^{2 \pi i \xi I / L} f(I)$.
Dilation: $D_{a} f(t)=f(t a)$ (only continuous)

- A filter bank consists of a set of filters and corresponding subsampling factors: $\left(g_{k}, b_{k}\right)_{k \in I}$
- The filter bank coefficients of a function $f \in \mathbb{C}^{L}$ are given by $c_{j, k}=\left\langle f, T_{j b_{k}} g_{k}\right\rangle=\left\langle\hat{f}, M_{-j b_{k}} \widehat{g_{k}}\right\rangle, k \in I$. In the finite discrete case $j=0, \ldots, L / b_{k}-1$, in the continuous case $j \in \mathbb{Z}$.

Gabor and Wavelet filters

Gabor filters

$$
\begin{gathered}
g_{k}=M_{a k} g_{1}, \\
\widehat{g_{k}}=T_{a k} \widehat{g_{1}}
\end{gathered}
$$

Wavelet filters

$$
\begin{gathered}
g_{k}(t)=g_{1}\left(e^{(k-1)} t\right) \\
\widehat{\widehat{g}_{k}}(t)=\widehat{g}_{1}\left(e^{-(k-1)} t\right)
\end{gathered}
$$

Linear frequency scale

Logarithmic frequency scale

Painless filter subsampling

Painless case - finite discrete

Given a set of filters and corresponding numbers of translations $\left(g_{k}, b_{k}\right)_{k=0, \ldots K-1}$, where $N_{k}=L / b_{k}$. If $N_{k} \geq\left|\operatorname{supp} g_{k}\right|$, then we can achieve perfect reconstruction if there exist $0<A, B<\infty$, such that

$$
A \leq F(I):=\sum_{k=1}^{K}\left|\widehat{g_{k}}(I)\right|^{2} \leq B
$$

Furthermore, we can reconstruct using the formula

$$
f(I)=\sum_{k=0}^{K-1} \sum_{j=0}^{N_{k}-1}\left\langle\hat{f}, M_{-j L / N_{k}} \widehat{g}_{k}\right\rangle g_{k}(I) / F(I)
$$

For the continuous case: replace N_{k} by $1 / b_{k}$.

Partitions of Unity - Hanning windows

It is easy to control the properties of a system of translates (Gabor filters): $\widehat{g_{k}}=T_{j L / N} \widehat{g_{k}}$.

Hanning window

The Hanning window (raised cosine window) is defined as

$$
H(t)=\frac{1}{2}(1+\cos (\pi t)) \mathbb{1}_{[-1,1]} .
$$

It satisfies for some overlap constant K

$$
\sum_{k \in \mathbb{Z}}|H(t-k 2 / K)|^{2}=\mathrm{const}
$$

Partitions of Unity II

Left: half overlap, Right: 3/4 overlap
Solid black line: sum of the squares of the filters

Warping - Idea

We have seen: It is easy to construct a partition of unity for translates of a function.
Generalization: non-linear evaluation of the original filters

Warping - Definition

Given a set of filters $\widehat{g_{k}}=T_{k} \widehat{g_{0}}$ and a warping function $F: D \rightarrow \mathbb{R}$, then we define the warped filters to be $\widehat{\varphi_{k}}(t)=\widehat{g_{0}}(F(t)+k)$.

Warping - visualization

Example for warping function $F=\log$
Left: original filters (translates), Right: warped filters (dilates) Left: $\widehat{g_{k}}=T_{k} \widehat{g_{0}}$, Right: $\widehat{\varphi_{k}}(t)=\widehat{g_{0}}(\log (t)+k)=\widehat{\varphi_{0}}\left(e^{k} t\right)$.

Warping and partitions of unity

The warping leaves the summation properties of the filters invariant:

$$
\sum_{k=0}^{K-1}\left|\widehat{\varphi_{k}}(t)\right|^{2}=\sum_{k=0}^{K-1}|\widehat{g}(F(t)+k)|
$$

Summary

- For filter banks the sum of the squares of the filters $F(I)$ has an important influence
- We have seen how to construct partitions of unity for a family of translates (Hanning window)
- Warping allows us to construct a filter bank following a given scale from the system of tranlates
■ Up to now we have seen the logarithm as a warping function wavelets

ERB warping function

ERB-scale (from Wikipedia)

The equivalent rectangular bandwidth or ERB is a measure used in psychoacoustics, which gives an approximation to the bandwidths of the filters in human hearing, using the unrealistic but convenient simplification of modeling the filters as rectangular band-pass filters.

$$
\begin{gathered}
E(f)=\operatorname{sign}(f) c_{1} \log \left(1+|f| c_{2}\right) \\
c_{1}=9.2645, c_{2}=0.00437 .
\end{gathered}
$$

ERB-scale

ERB-Scale

Left: system of tranlates, Right: warped system, ERB-let filters

ERB-transform and Wavelet transform

Left: ERB-let transform, Right: wavelet transform

Left: ERB warping function, Right: transform coefficients

Walming with square root

Left: warping function $F(t)=\operatorname{sign}(t) \sqrt{|t|}$, Right: transform coefficients

Thank you for your attention

