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Mathematical landscape of Berlin

Prof. Gitta Kutyniok

I Frame theory

I Shearlets

I Applications of compressed sensing

I High-dimensional data analysis
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Linear algebra revisited

“Simplest” equation in mathematics:
y = Ax for (known) m × N matrix A and y ∈ Rm

Task: recover x ∈ RN from y

Studied from many points of view:
Linear algebra: existence, uniqueness
Numerical analysis: stability, speed
Special methods for structured matrices A

“New” point of view:
. . . we look for a solution x with special structure!
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The world is compressible!

Natural images can be sparsely represented by wavelets!. . . JPEG2000

. . . today, we measure all the data (megapixels, i.e. millions), to
throw the most of them away!
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Sparse solutions

Simplified situation:

Let A be an m × N matrix, and let x ∈ RN be sparse,
i.e. with ‖x‖0 := #{i : xi 6= 0} small.

Recover x from y = Ax.

Natural assumption:
Given x ∈ RN . By experience, we “know” (i.e. expect) that there
exists an orthonormal basis Φ with x = Φc such that c is sparse

Task:
Let A be an m × N matrix, let x = Φc ∈ RN with Φ an ONB

and ‖c‖0 small. Recover x from y = AΦc.
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Prony’s method (1795)

Let x be s-sparse, i.e. ‖x‖0 ≤ s

Then x can be recovered by asking 2s (non-linear) queries:
- locations of non-zero positions
- and their value

=⇒ 2s degrees of freedom.

Theorem (Prony, 1795):
Let N ≥ 2s. Then every s-sparse vector x ∈ RN can be recovered
(by a “practical” procedure) from its first 2s discrete Fourier
coefficients.

- not stable with respect to “defects” of sparsity, i.e. fails for
“nearly sparse” vectors
- not robust with respect to noise of the measurements
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Let’s play: ‖x‖0 = 1, i.e. x = λej

A :=


1 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0
...

. . .
...

... . . .
...

0 0 . . . 1 0 . . . 0

 ∈ Rm×N is just bad...

A :=

(
1 1 . . . 1
1 2 . . . N

)
; A(λej) =

(
λ
jλ

)
.

But

A
(N − 2

N − 1
, 0, . . . , 0,

1

N − 1

)T
= Ae2 =

(
1
2

)
=⇒ bad stability
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Random matrices

Let A = (ak,l), then A(λej) = λa·,j is co-linear with a·,j , the jth
column of A

If the columns of A are normalized, “nearly orthogonal”, we can
easily find j - in a stable way.

Concentration of measure phenomenon:
If ak,l are i.i.d. random variables (Gaussian, Bernoulli, . . . ), then
this is the case already for surprisingly small m’s. . . m ≈ log N.
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(a) Logan-Shepp phantom, (b) Sampling Fourier coef. along 22 radial lines,
(c) `2 reconstruction, (d) total variation minimization

Source: Candès, Romberg, Tao
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Sparse recovery

Natural minimization problem:
Given an m × N matrix A and y ∈ Rm, solve

min
x
‖x‖0 subject to y = Ax

This minimization problem is NP-hard!

p ≤ 1 - promotes sparsity
p ≥ 1 - convex problem

Basis pursuit (`1-minimization; Chen, Donoho, Saunders - 1998):

min
x
‖x‖1 subject to y = Ax

−→ This can be solved by linear programming!
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`1 promotes sparsity

{x : y = Ax}

min ‖x‖2 s.t. y = Ax

min ‖x‖1 s.t. y = Ax
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Summary of the introduction

Situation:
Given an m × N matrix A and a sparse x ∈ RN ,

recover x from y = Ax!
‘Initial’ papers:

I E. Candès, J. Romberg, T. Tao, Stable signal recovery from incomplete
and inaccurate measurements, Comm. Pure Appl. Math. 59 (2006),
1207–1223.

I D. Donoho, Compressed sensing, IEEE Trans. Inform. Theory 52 (2006),
1289–1306.

Basic message:
Sparse high-dimensional signals can be recovered efficiently

from a small set of linear, non-adaptive measurements!
. . . random measurements, `1-minimization
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Directions

Situation:
Given an m × N matrix A and an s-sparse x ∈ RN ,

recover x from y = Ax!

Fundamental (theoretical) questions:

I What is the minimal number m = m(s,N) of measurements?

I For which sensing matrices is the task (uniquely) solvable?

I “Good” algorithms for recovery of x?

I Stability - i.e. “nearly sparse” x ’s?

I Robustness - i.e. noisy measurements?
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Notation

Sparsity: x ∈ RN is s-sparse, if

‖x‖0 ≤ s.

We often write: Σs = {x ∈ RN : x is s-sparse}.

Compressibility: x ∈ RN is compressible, if it can be well
approximated by sparse vectors, i.e. when its best s-term
approximation

σs(x)p := min
x̃∈Σs

‖x − x̃‖p

is small.

18 / 47



The setting of compressed sensing
Backgrounds of compressed sensing

Extensions, tricks, “small” applications
“Large” applications

Sparse Recovery Conditions
Sensing Matrices
Algorithms
Stability, robustness

Null Space Property

Definition:
A ∈ Rm×N has the Null Space Property (NSP) of order s if

‖1Λh‖1 <
1
2‖h‖1 for all h ∈ kern (A) \ {0} and for all #Λ ≤ s.

Theorem (Cohen, Dahmen, DeVore - 2008):
Let A ∈ Rm×N and s ∈ N. TFAE:

(i) For every y ∈ Rm, there exists at most one solution in Σs of

min
x
‖x‖1 subject to y = Ax .

(ii) A satisfies the null space property of order s.
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Restricted Isometry Property

Definition:
A ∈ Rm×N has the Restricted Isometry Property (RIP) of order s
with RIP-constant δs ∈ (0, 1) if

(1− δs)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δs)‖x‖2
2 ∀x ∈ Σs .

Theorem (Cohen, Dahmen, DeVore - 2008; Candès - 2008):
Let A ∈ Rm×N with RIP of order 2s with δ2s < 1/3. Then A has
NSP of order s.
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Sensing matrices

Random matrices (Candès, Donoho, et al.; 2006–2011)
Let A be an m×N-matrix with independent subgaussian entries. If

m ≥ Cδ−2s log(N/s),

then A satisfies the RIP of order s with δs ≤ δ with prob. at least

1− 2 exp(−cδ2m) ‘overwhelmingly high probability’.

Optimality (through high-dimensional geometry):
Stable recovery of s-sparse vectors is possible only for
m ≥ Cs log(N/s).
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Sensing matrices

Deterministic matrices:
m × N-matrices (Bourgain, DeVore, Haupt, et al.; 2007–2011):

m = O(s2 log N) or m = O(sNα), but m must be large.

Structured random matrices:
Random partial Fourier matrices
Random circulant matrices
Other constructions involving limited randomness and quick
running time . . .

m ≥ Cs log2(s) log2(N)

Krahmer, Mendelson, Rauhut (2012)
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Sparse recovery algorithms: `1-minimization

I Basis pursuit:

min
x
‖x‖1 subject to y = Ax

I Quadratically constrained basis pursuit:

min
x
‖x‖1 subject to ‖Ax − y‖2

2 ≤ ε
I Unconstrained version:

min
x

1
2‖Ax − y‖2

2 + λ‖x‖1

I LASSO (Least Absolute Shrinkage and Selection Operator)

min
x
‖Ax − y‖2

2 s.t. ‖x‖1 ≤ τ

−→ Specialized algorithms for Compressed Sensing!
−→ www.acm.caltech.edu/l1magic and sparselab.stanford.edu!
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Sparse recovery algorithms: greedy and combinatorial

Greedy algorithms:

I Orthogonal matching pursuit (OMP)

I Compressive sampling matching pursuit (CoSaMP)

I Iterative hard thresholding (IHT)

I Hard thresholding pursuit (HTP)

I ...

Combinatorial algorithms:

I Combinatorial group testing

I Data streams

I ...
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Stability, robustness

The theory can be easily generalized to include

I stability (x not sparse but compressible) and

I robustness (measurements with noise)

Let y = Ax + e, ‖e‖2 ≤ η, where A has the Robust Null Space
Property of order s. Then

x# := arg min
x
‖x‖1 subject to ‖Ax − y‖2 ≤ η

satisfies
‖x − x#‖1 ≤ Cσs(x)1 + D

√
s η

and

‖x − x#‖2 ≤
C√

s
σs(x)1 + Dη.
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“Matrix completion”, or low-rank matrix recovery

The theory applies to other sorts of sparsity!
x sparse means, that some (unknown) of its possible degrees of
freedom are not used (i.e. equal to zero)

The same is true for low-rank matrices!

E. Candès and T. Tao. The power of convex relaxation: near-optimal matrix
completion, IEEE Trans. Inform. Theory, 56(5), pp. 2053 - 2080 (2010)

E. Candès and B. Recht. Exact matrix completion via convex optimization,
Found. of Comp. Math., 9 (6). pp. 717-772 (2009)

D. Gross, Recovering low-rank matrices from few coefficients in any basis, IEEE

Trans. Inform. Theory 57(3), pp. 1548-1566 (2011)
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Low-rank matrix recovery

Let X ∈ Cn1×n2 be a matrix of rank at most r .
Let y = A(X ) ∈ Cm be the (linear) measurements of X .

We “want” to solve

arg min
Z∈Cn1×n2

rank(Z ) s.t. A(Z ) = y .

rank(Z ) = ‖(σ1(Z ), σ2(Z ), . . . )‖0 gets replaced by
the nuclear norm ‖Z‖∗ = ‖(σ1(Z ), σ2(Z ), . . . )‖1 =

∑
i |σi (Z )|.

The convex relaxation is then

arg min
Z∈Cn1×n2

‖Z‖∗ s.t. A(Z ) = y .
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Matrix completion

If A(X ) are selected entries of X =⇒ Matrix Completion
Few entries are known, the remaining are to be filled up!

Typical task for recommendation systems: Amazon, Netflix, . . .
Certain users ranked some of the products, we would like to predict
if other users would like different products. . .

Certainly impossible if:
X = ei ⊗ ej or
X = e1 ⊗ v

For both the theory and the practice: eigenvectors of X incoherent
with ej , j = 1, . . . ,m. Then stable and robust recovery of an N ×N
matrix X of rank r needs only O(r N log2 N) measurements.
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Phase retrieval

Setting:
Reconstruct the signal x from the magnitude of its discrete Fourier
transform x̂

General setting:
x given, bk = |〈ak , x〉|2, k = 1, . . . ,m known, recover x!

Frequent problem (i.e. astronomy, crystallography, optics),
different algorithms exist...

PhaseLift:
quadratic measurements of x are “lifted up” and become linear
measurements of the matrix X := xx∗:

|〈ak , x〉|2 = Tr(x∗aka∗kx) = Tr(aka∗kxx∗) = Tr(AkX ) = 〈Ak ,X 〉F ,
where Ak := aka∗k 30 / 47
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Exchanging Fourier phase while keeping the magnitude
picture: Osherovich 31 / 47
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PhaseLift

The “intuitive” problem

find X
subject to (Tr(AkX ))mk=1 = (bk)mk=1

X ≥ 0
rank(X ) = 1

gets replaced by a “convex” problem

minimize rank(X) ‖X‖∗
subject to (Tr(AkX ))mk=1 = (bk)mk=1

X ≥ 0.

. . . Matrix recovery problem!
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Results

E. Candès, Y. Eldar, T. Strohmer, and V. Voroninski. Phase retrieval via
matrix completion. SIAM J. on Imaging Sciences 6(1), pp. 199–225, 2011
E. Candès, T. Strohmer and V. Voroninski. PhaseLift: Exact and stable signal
recovery from magnitude measurements via convex programming. Comm. Pure
and Appl. Math. 66, pp. 1241–1274, 2011

E. Candès and X. Li. Solving quadratic equations via PhaseLift when there are

about as many equations as unknowns. To appear in Found. of Comp. Math.

Theorem (Candès, Li, Strohmer, Voroninski, 2011)
If ak ’s are chosen independently on the sphere and m ≥ CN (not
N log N!), then the unique solution of the convex problem is
X = xx∗ with high probability.

The reconstruction is robust w.r.t. noise!
Version for x sparse!
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Implementation of random measurements
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Separating features in video’s

Some videos (security cameras) can be divided into two parts
- background (= “low rank” component)
- movements (= “sparse” component)

The “intuitive” program

arg min
L,S

(rankL + λ‖S‖0), s.t. L + S = X .

gets replaced by a convex program

arg min
L,S

(‖L‖∗ + λ‖S‖1), s.t. L + S = X .

E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust Principal Component
Analysis?, Journal of ACM 58(1), 1-37 (2009)

Data from S. Becker (Caltech)
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Separating features in video’s: Example

Advanced Background Subtraction

First row:

Left: original image
Middle: low-rank (i.e. predictable) component
Right: sparse component

Second row: similar, quantization effects taken into account, i.e.
another term with Frobenius norm added.
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`1-SVM

For {x1, . . . , xm} ⊂ RN and {y1, . . . , ym} ⊂ {−1, 1},
the Support Vector Machine wants to separate the sets

{xi : yi = −1} and {xi : yi = +1}

by a linear hyperplane, i.e. finds w ∈ RN and b ∈ R with

〈w , xi 〉 − b > 0 for yi = 1,
〈w , xi 〉 − b < 0 for yi = −1.

It maximizes the size of the margin around the separating
hyperplane.
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min
w∈RN

m∑
i=1

(1− yi 〈w , xi 〉)+ + λ‖w‖2
2

`1-SVM replaces ‖w‖2
2 by ‖w‖1 - promotes the sparsity of w !

Zhu, Rosset, Hastie and Tibshirani (2003)

In bioinformatics: the (few) non-zero components of a sparse w
are the “markers” of a disease
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One-pixel camera

Dep. of Electrical and Computer Engineering, Rice University

Digital micromirror device (DMD):
linear projections onto pseudorandom patterns

Random number generator (RNG):
creating random patterns

Single photon detector (PD):

“single pixel”

Advantages:
short exposure time
beyond visible spectrum
special applications (astronomy)
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Setting
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Results

Original image with 16384 pixels
Image obtained by 1600 (10%) measurements
Image obtained by 3200 (20%) measurements
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Magnetic Resonance Imaging

MRI exhibits several important features, which suggest using CS:

1. MRI images are naturally sparse (in an appropriate transform
and domain).

2. MRI scanners acquire encoded samples, rather then direct pixel
samples.

3. Sensing is “expensive” (damage to patient, costs).

4. Processing time does not play much role.

MRI applies additional magnetic fields on top of a strong static
magnetic field. The signal measured s(t) is the Fourier transform
of the object sampled at certain frequency k̄(t).
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How to choose the frequencies, to allow for fast and high-quality
recovery?

Different shapes in the k space correspond to sampling of different
Fourier coefficients 43 / 47
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MRI - state of the art

M. Lustig, D. Donoho and J. M. Pauly (2007)

Several groups around the world (NYU, Berkeley, MRB Würzburg
& Siemens Medical Erlangen, Stanford, . . . )

Clinical testing in reach

Dream: Speed up to get videos?!
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Antenna sends out a signal (radar pulse) and measures the
response influenced by scattered objects.

Finite-dimensional model:
Translation and modulation operators

(Tkz)j = zj−k mod n, (Mlz)j = exp(2πilj/n)zj

Original signal is transformed to the measured signal by

B =
n∑

k,l=1

xk,lTkMl

. . . we expect the coefficient vector x to be sparse.
“Random design” of the radial phase is often replaced by Alltop
window:

gl = exp(2πil3/m), l = 1, . . . ,m.
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Top left: 7-sparse coef. vector in translation-modulation plane, top right:
reconstruction by `1-minimization with Alltop window, bottom: reconstruction
by `2; source: Foucart, Rauhut
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Thank you for your attention!

47 / 47


	The setting of compressed sensing
	Linear algebra revisited
	Sparsity enters the picture
	Randomness enters the picture
	Motivating example
	Sparse recovery

	Backgrounds of compressed sensing
	Sparse Recovery Conditions
	Sensing Matrices
	Algorithms
	Stability, robustness

	Extensions, tricks, ``small'' applications
	Matrix completion
	Phase retrieval
	Data separation
	1-SVM

	``Large'' applications
	One-pixel camera
	MRI
	Radar


