

Robust Glottal Gap tracking based on Temporal Intensity Variation

Gustavo Xavier Andrade Miranda Juan Ignacio Godino Llorente <u>gxandrade@ics.upm.es</u> Dept. ICS, Universidad Politécnica de Madrid, Spain

Table of Content

Motivation

Methods for the larynx exploration

- Slow motion stroboscopy (SMS)
- High Speed digital imaging (HSDI)

Glottal Gap Tracking

- State of art review
- ROI Detection
- Watershed and First Region Merging
- Correlation Regions Merging
- Localizing Region-Based Active Contours
- Results
- Conclusions

Glottal Gap Tracking

Results

Conclusions

Motivation (I)

 The detection of the glottal area is the first step and the most challenging in the assessment of the vocal fold vibration.

- It is possible to extract some simple measurements such as:
 - the ratio of vibratory amplitude
 - ratio of periods of vibration, etc.

Motivation (II)

- Techniques used for a detailed analysis of the vibration of the vocal folds:
 - Glottal Vibration Profiles (GVP),
 - Glottal Area Waveforms (GAW),
 - Digital Kymograms (DKG),
 - Phonovibrograms (PVG).
- Aim:
 - Combining techniques based on temporal information with segmentation algorithm like active contours and watershed.

Glottal Gap Tracking

Results

Conclusions

Methods for the larynx exploration

 Recording the movements of the vocal folds is impossible using a standard video cameras (25-30 frames/sec.)

Slow Motion Stroboscopy (SMS)

- Fibroscopy (or videofibroscopy).
- Telelaringoscopy (or videotelelaringoscopy).

High-Speed Digital Images (HSDI)

- High Speed Cinematography.
- Videokymography.

Segmentation Algorithm

The literature reports different methods for segmenting the glottal gap:

- Thresholding and Histograms [mehta01]
- Region growing [Lohscheller07]
- Watershed transform [Osma-Ruíz08]
- Actives contours (snakes) [Marendic01]

Most of the segmentation algorithms used in the literature **do not take into account the temporal dimension, so each frame is treated individually** leaving aside the information obtained from the previous frames

→ Tracking

Glottal Gap Tracking

Results

Conclusions

Scheme of the Proposed Method

Step2:Total Intensity Variation in Rows (TIVr)

 $|y_i - y_{i-1}| \le 0.009$ $\forall i \in y \mid TIV_r(i) < 0.4;$

Determination of the optimal value of N (I)

- The selection of N is the most important for the correct ROI detection.
- The ROI has to tolerate the camera displacements

Conclusions

Determination of the optimal value of N (II)

- □ The choice of N was performed considering only the TIVc.
- N was chosen through experimentation observing the entire database (18 HSDI).
- The minimum requirement to achieve a robust ROI is choose a N that contain at least one complete glottal cycle.

Step3: Watershed and First Region Merging

Step4: Correlation Regions Merging

- Obtained empirically based on manual segmentations.
- Composed by a white background and a black foreground.
- Size of the template is 12x42 pixels.
- Glottis-like shape.

Step5: Localizing region-based active contours

Results (I)

- The Database is composed by 18 HSDI sequences of resolution 256x256 pixels and the sampling rate is 4000 frames/seconds.
- All videos chosen have recorded under different conditions;
 - Different illumination levels
 - contrast problems
 - Presence of nodules
 - Partial occlusion of the glottis
 - Lateral displacements of the camera
- Three trials were develop:
 - Compare our ROI methodology with the proposed in [Karak12].
 - Compare the results obtained by two manual segmentations with the method proposed using the Pratt index [Pratt79].
 - A visual inspection of the PVG obtained by manuals and automatic segmentation.

Motivation

Glottal Gap Tracking

Results

Conclusions

Results (II)

Method proposed in [karak12] for ROI Detection

Glottal Gap Tracking

Results

Conclusions

Results (III)

Results

Conclusions

Results (III)

Expert 1 vs Expert 2

Results

Conclusions

Results (III)

Expert 1 vs Automatic Segmentation Quality based on 5-point scale Verygood 44 *** very bad 0 video 2 video 3 video4 video5 video 6 video 1 **Video Sequences**

Results

Results (III)

Expert 2 vs Automatic

Conclusions

Results (IV)

Conclusions

- The main motivation of this paper was propose a complete framework for the assess the glottis tracking.
- The mechanism proposed for detect the ROI adjust better in the demanding cases like;
 - Glottis with partial occlusion
 - Camera movements
 - Depth differences between videos recording
 - Reliability against external artifacts
 - Glottis divide in two parts
- We have proposed a complete methodology, combining traditional and new techniques in image processing with temporal intensity variation for the ROI detection.
- Results obtained compared with manual segmentations are similar

References

- Mehta, D.D., Deliyski, D.D., Quatieri, T.F., Hillman, R.E.: Automated measurement of vocal fold vibratory asymmetry from high-speed videoendoscopy recordings. Speech, Language and Hearing Research 54(1), 47 – 54 (2011) [Mehta01]
- Lohscheller, J., Toy, H., Rosanowski, F., Eysholdt, U., Dollinger, M.: Clinically evaluated procedure for the reconstruction of vocal fold vibrations from endoscopic digital highspeed videos. Medical Image Analysis 11(4), 400 – 413 (2007) [Lohscheller07]
- Osma-Ruíz, V., Godino-Llorente, J.I., Sáenz-Lechón, N., Fraile, R.: Segmentation of the glottal space from laryngeal images using the watershed transform. Computerized Medical Imaging and Graphics 32(3), 193 201 (2008) [Osma-Ruíz08]
- Marendic, B., Galatsanos, N., Bless, D.: New active contour algorithm for tracking vibrating vocal folds. In: Image Processing, 2001. Proceedings. 2001 International Conference on, vol. 1, pp. 397–400 (2001) [Marendic01]
- I. E. Adbou, W. K. Pratt "Quantitative design and evaluation of enhancement/thresholding edge detectors" Proceedings of the IEEE, vol.67, pp. 753-763, 1979. [Pratt79]
- S. Lankton, A. Tannenbaum. "A localizing region-based active contours." IEEE Trans. on Image Processing, pp. 2029-2039, 2008. [Lankton08]
- S.-Z. Karakozoglou, N. Henrich, C. D'Alessandro, Y. Stylianou, "Automatic glottal segmentation using localbased active contours and application to glottovibrography," Speech Communication, vol. 54, no. 5, pp. 641–654, 2012. [Karak12]

Thank you for your attention

Grants: TEC2009-14123-C04 and TEC2012-38630-C04-01 from the

Spanish Ministry of Economy. Thanks to Dr. Erkki Bianco and Gilles Degottex for the database provided.

> Gustavo Xavier Andrade Miranda Juan Ignacio Godino Llorente gxandrade@ics.upm.es

Dept. ICS, Universidad Politécnica de Madrid, Spain