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Overview

1 Short-time Fourier transforms and frames

2 Nonseparable sampling sets

3 Computational aspects
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Short-time Fourier transforms
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Figure: Signal and STFT

Short-time Fourier transform

The short-time Fourier transform of f ∈ CL,
with respect to the window g ∈ C

L is defined
as

Vg f (m, n) = 〈f ,MmTng〉

= F(f Tng)(m), (n,m)T ∈ Z
2
L.

Here, Tn and Mn denote circular translation
Tng(l) = g (mod(l − n, L)) and modulation
Mmg(l) = g(l)e2πiml/L, respectively.
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Sampling the STFT

The STFT is highly redundant and usually only a subset of the
coefficients is computed.

Standard sampling considers a time step a and frequency step b,
leading to sampling sets of the form aZL × bZL.

Efficient algorithms, based on FFT or matrix factorization, exist for
this case.

Goal of the presentation: Generalized sampling on subgroups
Λ ≤ ZL × ZL has the potential to improve representation quality and
standard algorithms can be used at little additional computational cost.
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Lattices

The sampling sets can be visualized in the (2D) time-frequency plane,
forming a lattice. We call a lattice separable, if it is of the form
aZL × bZL and nonseparable otherwise.
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Figure: A separable lattice (left) and an example of a nonseparable lattice with
the same time and frequency steps.
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Describing nonseparable lattices
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Any lattice Λ in ZL × ZL can be described by
a time step a, frequency step b and frequency
offset s.
Alternatively, we can categorize Λ by its
lattice type (λ1, λ2) where λ1/λ2 = s/b and
λ1, λ2 are coprime.
In any case, we denote the number of
frequency and time steps by

M = L/b and N = L/a. (1)
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An alternative point of view

A Gabor system on Λ is the collection of functions

G(g ,Λ) = (gλ)λ∈Λ, where gλ = MmTng , λ = (n,m)T . (2)

Stable invertibility of the sampled STFT on Λ is equivalent to G(g ,Λ)
being a frame, i.e. a spanning set such that 0 < A ≤ B < ∞ exist with

A‖f ‖2 ≤
∑

λ∈Λ

|〈f , gλ〉|
2 ≤ B‖f ‖2. (3)

The frame bound ratio B/A is a measure of the systems quality and how
well signals are represented by it. A frame is called tight, if A = B.
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More on frames

A Gabor frame is associated with the (invertible) frame operator

SG(g ,Λ)f =
∑

λ∈Λ

〈f , gλ〉gλ, for all f ∈ C
L. (4)

There exist dual windows h ∈ C
L such that

f (l) =
∑

λ∈Λ

〈f , gλ〉hλ(l)

=
N−1∑

n=0

Tnh(l)
M−1∑

m=0

F(f Tng)(mb + ns)e2πi(mb+ns)l/L, for all f ∈ C
L.

(5)

A particular dual window is so-called canonical dual g̃ = S
−1
g ,Λg . If

G(g ,Λ) is tight, then g̃ = A−1g .
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Lattices and time frequency concentration

STFT windows are usually designed without considering the lattice,
resulting in suboptimal frame bounds and dual frames. Matching the
lattice to the window can improve this.
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Figure: Interplay of TF concentration and the lattice: (left) separable, (right)
(1,2)-type or quincunx lattice

Simultaneous time-frequency concentration can be quantified by the
squared magnitude of the (discrete) ambiguity function

Ag (m, n) = Vgg(m, n). (6)
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Frame quality as a covering problem

Proposition

Let Λ = AZ2
L be a lattice. If G(g ,Λ) is a frame with frame bounds

0 < A ≤ B < ∞, then

B/A ≥

max
m,n∈{0,...,L−1}

Π(n,m)

min
m,n∈{0,...,L−1}

Π(n,m)
, (7)

where

Π(n,m) =

N−1∑

k=0

M−1∑

l=0

|Ag (n − ka,m− lb − ks)|2. (8)

Moreover, Π(n,m) = A > 0 for all n,m is equivalent to G(g ,Λ) being a
tight frame
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From window to covering problem

A a consequence of the previous proposition, a sampling of the STFT
only has a chance of forming a good frame, if the periodized ambiguity

function is close to constant.
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Figure: A Gaussian window, its ambiguity function and periodized ambiguity
function of a separable lattice.

N. Holighaus Nonseparable STFT November 1, 2013 11/25



Some well-known window prototypes

0

0.2

0.4

0.6

0.8

1

Hann (blue) and rectangular (red) windows

0

0.2

0.4

0.6

0.8

1

Blackman (blue) and Bartlett (red) windows

0

0.2

0.4

0.6

0.8

1

Nuttall (blue) and hyperbolic secant (red) windows

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

N. Holighaus Nonseparable STFT November 1, 2013 12/25



Their time-frequency concentration

Hann window Blackman window Nuttall window

Rectangular window Bartlett window Hyperbolic secant window

Figure: Ambiguity functions of various windows
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Periodized ambiguity functions - I

Hann window
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Figure: Periodized ambiguity functions on the rectangular (0/1) lattice
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Periodized ambiguity functions - II
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Figure: Periodized ambiguity functions on the quincunx (1/2) lattice
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Periodized ambiguity functions - III
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Figure: Periodized ambiguity functions on the ’3/16’ lattice
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Different configuration, same window - I

Nuttall (top) and SecH (bottom) windows On rectangular lattice On quincunx lattice On 3/16−type lattice
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Different configuration, same window - II

Generalized Gaussian windows On rectangular lattice On quincunx lattice On 3/16−type lattice
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Computation of STFT on lattices

Both STFT analysis and inversion on general lattices can be computed
using classical, efficient algorithms for separable lattices plus some
inexpensive pre- and post-processing. Two main method types exist to
achieve this:

(i) Multiwindow methods

(ii) Deformation methods
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Multiwindow methods
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Multiwindow techniques decompose a lattice
into cosets of the sparser, separable lattice
Λ̃ = aλ2ZL × bZL and use the following
equality, which holds up to a phase factor.

G(g ,Λ) = {Mmb+nsTnag}m,n

=

λ2−1⋃

k=0

{MmbTnλ2aMmod(ks,b)Tkag}m,n

=

λ2−1⋃

k=0

G(Mmod(ks,b)Tkag , Λ̃)
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Deformation methods - I

Deformation methods use a correspondence between certain unitary
operators on the time-frequency plane and the signal space, known
under the name metaplectic representation.
This allows us to find an equivalence between a given system on Λ and
another system on a separable lattice Λ̄.
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Deformation methods - II

More explicitly, there exist a pair of unitary operators D on Z2
L and UD

on CL, such that

DΛ̄ = {D(n,m)T : (n,m)T ∈ Λ̄} = Λ (9)

and moreover

g̃ = S
−1
g ,Λg = U

−1
D S

−1

U
−1
D

g ,Λ̄
UDg and (10)

Vg f (m, n) = φ(m, n)V
U

−1
D

gU
−1
D f (m̄, n̄), (11)

with (n̄, m̄)T = D−1(n,m)T . Here, φ is just a phase factor and UD is
some composition of (inverse) Fourier transforms and pointwise scalar
multiplication.
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Efficiency of the proposed algorithms

We compare the multiwindow method with two distinct deformation
methods, denoted as Smith and Shear.

Figure: Performance of the algorithms for 3 different choices of a,b and L.
The value at λ2 = 1 corresponds to the separable case.
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Conclusion

Good pairings of window and lattice have the potential to improve
frame quality and therefore processing results.

For standard windows, the (1,2)-type (quincunx) lattice seems most
promising.

The additional cost of computing the operations associated with
sampled STFTs on nonseparable lattices amounts to some
inexpensive pre- and post-processing.

Efficient implementations are freely available in the LTFAT toolbox.

From a computational or frame theoretic point of view, there are no

good reasons not to work on general lattices.
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Thank you for your attention

LTFAT URL: http://ltfat.sourceforge.net/
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