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The Gabor transform

Gabor transform

For f , g ∈ `2(Z), and a, M ∈ Z, we define the Gabor
system G(g, a, M) :=

(
gm,n

)
n∈Z, m=0,...,M−1, by

gm,n = g[· − na]e2πim·/M
, (1)

and the Gabor transform of f by

(Gf )[m + nM] = 〈f , gm,n〉 =
∑
l∈Z

f [l]gm,n[l]. (2)
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Reconstruction

Gabor synthesis

For a coefficient sequence c ∈ `2(Z), Gabor synthesis is performed by
applying the conjugate transpose of G to c.

fsyn[l] = (G∗c)[l] =
∑
m,n

c[m + nM]g[l− na]e2πiml/M.

The concatenation S = G∗G is called the frame operator.

Peter Balazs (ARI) Gabor windows using convex optimization 31.10.2013 7 / 26



Dual window

Perfect reconstruction can be achieved using the Gabor synthesis
operator using a dual window.

f [l] = (G∗c)[l] =
∑
m,n

〈f , gm,n〉g̃m,n.

The most common dual window is the canonical dual window defined
by g̃ = S−1g.

Redundant Gabor frames admit infinitely many dual frames of the form
G(h, a,M). They are characterized by the Wexler-Raz relations.
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Different synthesis

Peter Balazs (ARI) Gabor windows using convex optimization 31.10.2013 9 / 26



Possible criteria for dual windows

Compactly supported (FIR window)
Localized in time (smooth in frequency)
Localized in frequency (smooth in time)
Similar to a prespecified function
...

The canonical dual may not always satisfy the (application
specific) criteria.
Our approach: Associate mathematical objective functions
and constraints with each desired criterion, and design a dual
window via convex optimization.
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Defining the problem

We transform our requirements into a convex optimization
problem of the form:

h = argmin
x∈RL

K∑
i=1

λifi(x) + iC(x)

with
C the set of windows satisfying our constraints. This set
need to be non empty and convex.
fi ∈ Γ0(RL) selected regularization functions that promote
certain properties.
λi weights chosen in order to balance the different
properties called regularizers.
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Regularization function examples

Function Effect on the signal
‖x‖1 sparse representation in time
‖Fx‖1 sparse representation in frequency

‖∇x‖2
2

smoothen the signal in time /
concentrate in frequency

‖∇Fx‖2
2

smoothen in frequency /
concentrate in time

‖x‖2
2 spread values more evenly

‖x− gsh‖2
2 makes x close to gsh

‖x‖S0 Concentrate x in time and frequency
iC(x) force x ∈ C
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Constraint examples

Duality: satisfy the Wexler-Raz equations
Support: be an FIR window
Tight: produce a tight frame

The indicative function iC(x) allows to insert the constraint into
the problem.
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The Wexler-Raz equations

Wexler-Raz relations [Wexler and Raz, 1990]
Two Gabor systems G(g, a,M), G(h, a,M) are dual iff

M
a

〈
h, g[· − nM]e2πim·/a

〉
= δ[n]δ[m],

for m = 0, ..., a− 1, n ∈ Z.

They can also be stated as

Gg,M,ah =
a
M
δ.
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Dual windows

h is a dual window of g for a given length L if it satisfies the
L
M a Wexler-Raz equations for this interval L.
For compactly supported dual window h only a few
Wexler-Raz equations for `2(Z) are not trivially satisfied.
The canonical dual windows is only guaranteed to be
compactly supported in the painless case (M ≥ Lg).
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Tight windows

The Wexler-Raz equation for tight systems,

G◦g =
a
M
δ,

do not have a convex set of solutions. → No convergence
guarantee
The projection onto tight set is given by

PCtight(z) = S(z)−
1
2 z

where S(z) is the frame operator of G(z, a,M)
[Janssen and Strohmer, 2002].
Experimentally, we were still able to obtain good solutions.
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Example 1

Redundancy of 8 (M = 120, a = 15)
Fixed length of L = 240

h = argmin
x∈Cdual

{
‖∇Fx‖2

2 + 5‖∇x‖2
2
}

Figure : Analysis window: ’itersine’ Lg = 120. This windows is tight.
The solution of the optimization problem is close to a Gaussian
window.
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Example 1 (cont’d)

Redundancy of 8 (M = 120, a = 15)

Fixed length of L = 240

h = argmin
x∈Cdual

{
‖x− gm‖2

2
}

Figure : (o) Function gm (p) Results of convex optimization problem
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Example 2

Redundancy of 2 (M = 60, a = 30)

Non painless case (Lg = 120 > M)

Dual compactly supported (Lh = 120)

Figure : (a)(b) Synthesis window respectively in time and frequency
domains.
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The truncation method
[Strohmer, 1998]

h = argmin
x∈Cdual∩Csupp

{
‖x‖2

2
}

Figure : (e)(f) Synthesis window (by truncation method) respectively
in time and frequency domains.

The dual window is not concentrated in frequency.
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Example 3

h = argmin
x∈Cdual∩Csupport

{
0.001‖Fx‖1 + 0.001‖x‖1 + ‖∇Fx‖2

2 + ‖∇x‖2
2
}

Figure : (c)(d) Synthesis window (by convex optimization)
respectively in time and frequency domains
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Example 4

Redundancy of 2 (M = 60, a = 30)

Tight frame (Non convex problem)

Dual compactly supported (Lh = 360)

h = argmin
x∈Csupport∩Ctight

{
‖∇Fx‖2

2 + 5‖∇x‖2
2

}

Figure : Windows respectively in time and frequency domains
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Conclusion

We provide a flexible method for customizing dual
windows.
The set of dual windows might be very broad. In this set,
we are only limited by our own creativity.
3 main uses:

Compute windows with good properties when no other
method is possible.
Improve existing windows.
Prove that an existing window is already optimal.

The method was tested numerically and returned
promising results.
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Reproducible research

Simulations were performed using the LTFAT
[Søndergaard et al., 2012] and the UNLocBoX matlab toolbox.
A reproducible research addendum collecting all this
experiments and allowing you to design your own windows will
be soon downloadable at: in
http://unlocbox.sourceforge.net/rr/gdwuco.
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Questions / Thanks

Do you have any questions?
Thanks you for your attention

This work was supported by the Austrian Science Fund (FWF)
START-project FLAME (“Frames and Linear Operators for
Acoustical Modeling and Parameter Estimation”; Y 551-N13).
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