Gabor and Wavelet transforms for signals defined on graphs An invitation to signal processing on graphs

Benjamin Ricaud

Signal Processing Lab 2, EPFL Lausanne, Switzerland

SPLab, Brno, 10/2013

Swiss federal institute of technology

- 9,306 students of over 125 nationalities
- 316 laboratories, 319 faculty

Main focus: engineering, computer science, life science, biomedical engineering.

Signal Processing Lab. 2

Prof. Pierre Vandergheynst 2 postdocs, 7 Phd Students, 1 engineer (software)

- Signal and image processing
 - 3D reconstruction, video tracking
- Sparsity, compressive sensing
 - compressive sensing for MRI data
- Optimization, inverse problems
- Graphs and signal processing on graphs
 - Analysis of brain data (fMRI /dMRI), graph of music, transportation networks

From theory to applications and to start-ups.

Graphs: models for many applications

Graphs: models for many applications

Nodes \mathcal{V} , edges \mathcal{E} , weight matrix w.

Data on graphs

A signal: a value or vector on each node $f: \mathcal{V} \to \mathbb{R}^N$ or \mathbb{C}^N . Here N = 1.

Examples of applications

Focus: denoising and sparsity in wavelets

(1) signal, (2) noisy signal y, (3) smoothing: $\mathrm{argmin}_f \|y-f\|_2^2 + \gamma \langle f, Lf \rangle$

Wavelet denoising. Wavelet transform + thresholding

Decay of wavelet coefficients

Analysis of functions, key concepts

- Smoothness, regularity of functions on graphs
 - The Laplacian
- Locality
- Wavelet transform
- Gabor transform

The graph Laplacian L

Regularity of a function on the graph

Smooth function: function with small variations from node to node. Measures of the variations:

Gradient: a value for each edge $\ell^2(\mathcal{V}) \to \ell^2(\mathcal{E})$

$$\nabla f(m,n) = \sqrt{w(m,n)}[f(n) - f(m)]$$

Laplacian: a value for each node $\ell^2(\mathcal{V}) \to \ell^2(\mathcal{V})$

$$Lf(n) = \nabla^* \nabla f(n) = \sum_m w(m,n) [f(n) - f(m)]$$

Choice

+ graph Laplacian well studied in math + used in the wavelet definition $\rightarrow L$.

Global regularity

Regularity based on the Laplacian.

■ The graph Laplacian quadratic form (used for Tikhonov reg.)

$$||f||_L := ||\nabla f||_2 = \sqrt{\langle f, Lf \rangle}.$$

■ Sobolev regularity $(p \in \mathbb{N})$: $||L^p f||_2 + ||f||_2$

Wavelets (Hammond et al. ACHA, 2011)

Main challenges:

- define translation,
- define dilation.

Classical case:

- translation: convolution with a delta, multiplication in the Fourier domain,
- dilation: inverse dilation in the Fourier domain.

Fourier on graphs

Fourier domain = spectral domain of the Laplacian.

- Classical case: $Le^{ikx} = -\frac{d^2}{dx^2}e^{ikx} = k^2e^{ikx}$.
- Graph case: eigenvectors $\{u_k\}$ of L = Fourier modes $Lu_k = \lambda_k u_k$.
- Graph Fourier transform:

$$\widehat{f}(k) = \langle f, u_k \rangle.$$

Translations on the graph

Generalization of the convolution

■ Localization around point a: convolution $f * \delta_a$. Multiplication in Fourier

Classical:
$$T_a f(x) = f(x-a) = \int_{\mathbb{R}} \widehat{f}(k) e^{-2\pi i k a} e^{2\pi i k x} dk$$

Graph: $T_a f(j) = \sum \widehat{f}(n) u_n^*(a) u_n(j)$

■ We prove that it stays localized. but the shape changes as well as the ℓ^2 -norm.

Dilations on the graph

Fourier domain

Dilation in the Fourier domain. $Fourier\ domain = a\ line$

- **1** define a continuous function \widehat{g} on \mathbb{R}_+ , "Wavelet kernel",
- 2 dilate it at different scales $\widehat{g}_s(\lambda) = \widehat{g}(s\lambda)$,
- 3 take the discretized version of \widehat{g}_s on the spectrum,
- **4** compute the inverse Fourier transform of each \widehat{g}_s .

$$\psi_{s,a}(j) = \sum_{n} \left(\widehat{g}_s(n).u_n^*(a)\right) u_n(j)$$

Dilations on the graph (2)

Wavelets (Hammond et al. ACHA, 2011)

- Eigendecomposition of the Laplacian.
- Kernel \widehat{g} defined on the spectral domain. $\widehat{g}: \mathbb{R}_+ \to \mathbb{R}$ continuous.
- Wavelet: $\psi_{s,n}(j) = \sum_{l} \widehat{g}(s\lambda_{l}) \overline{u_{l}(n)} u_{l}(j)$.
- Wavelet transform: $Wf(s,n) = \langle f, \psi_{s,n} \rangle$.
- Invertible transform: add scaling function *h* (low-pass filter).

Admissibility cond. $\int_0^\infty \widehat{g}(x)^2 dx/x < \infty$

A Gabor transform on graphs

Ingredients

- a window,
- a translation,
- a modulation.

Modulations on the graph

Modulation: multiplication by a Fourier mode (eigenmode of the Laplacian).

$$M_k f(i) = \sqrt{N} u_k(i) f(i).$$

Gabor frame

The set

$$M_b T_a g(i) = \sqrt{N} u_b(i) \sum_n \widehat{g}(n) u_n^*(a) u_n(i)$$

is a frame:

$$A\|f\|_{2}^{2} \leq \sum_{a=1}^{N} \sum_{b=0}^{N-1} |\langle f, M_{b} T_{a} g \rangle|^{2} \leq B\|f\|_{2}^{2}$$
$$0 < N|\widehat{g}(0)|^{2} \leq A = \min_{a = \{1, 2, \dots, N\}} N\|T_{a} g\|_{2}^{2}$$
$$B \leq \max_{a} N\|T_{a} g\|_{2}^{2}$$

Shuman, Ricaud, Vandergheynst, Vertex-frequency analysis on graphs, 2013.

Visualization

Conclusion

Function behavior on the graph

- \blacksquare Globally smooth, slow variations of f,
- piecewise smooth (communities), spikes, fast variations in small regions,
- oscillations.

Representation and sparsity

- Piecewise smooth functions on graphs: Sparse representation in wavelets
- (localized) oscillations: sparsity in Gabor

Applications

- compression, compressive sensing,
- denoising,
- inpainting, label propagation...