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Lab Presentation
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Lab Presentation

Signal Processing Lab. 2

Prof. Pierre Vandergheynst
2 postdocs, 7 Phd Students, 1
engineer (software)

m Signal and image processing

m 3D reconstruction, video tracking

Sparsity, compressive sensing

m compressive sensing for MRI data

Optimization, inverse problems

Graphs and signal processing on graphs

m Analysis of brain data (fMRI /dMRI), graph of music, transportation
networks

From theory to applications and to start-ups.
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Motivation

Graphs: models for many applications
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Motivation

Graphs: models for many applications

Nodes V, edges &, weight matrix w.

Data on graphs

A signal: a value or vector on each node f :V — RN or CV. Here N = 1.
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Motivation

Examples of applications

Compression /Visualization
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Motivation

Focus: denoising and sparsity in wavelets
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(1) signal, (2) noisy signal y, (3) smoothing: argmin |ly — f[|3 +~v(f, Lf)

Wavelet denoising. Wavelet transform + thresholding

Decay of wavelet coefficients
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Motivation

Analysis of functions, key concepts

m Smoothness, regularity of functions on graphs
m The Laplacian

m Locality
m Wavelet transform

m Gabor transform
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The Laplacian

The graph Laplacian L

Regularity of a function on the graph

Smooth function: function with small variations from node to node. Measures

of the variations:
Gradient: a value for each edge £2(V) — £2(€)

Vf(m,n) = Vw(m,n)[f(n) — f(m)]
Laplacian: a value for each node ¢2(V) — ¢3(V) [ [ T

Lf(n) = V*Vf(n) = Y wlm,n)[f(n) - f(m)]

m

Choice

+ graph Laplacian well studied in math 4 used in the wavelet definition — L.
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Global regularity

Global regularity

Regularity based on the Laplacian.
m The graph Laplacian quadratic form (used for Tikhonov reg.)

Ifllz = IV fllz2 = V(. Lf).

m Sobolev regularity (p € N): ||LP f||2 + || f||2

(f,Lif) =014 (f,Lof) =131  (f Lsf) = 181
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Wavelets (Hammond et al. ACHA, 2011)

Main challenges:
m define translation,
m define dilation.
Classical case:

m translation: convolution with a delta, multiplication in the Fourier
domain,

m dilation: inverse dilation in the Fourier domain.

Fourier on graphs
Fourier domain = spectral domain of the Laplacian.
m Classical case: Le'*® = —%226“” = k2ethz,
m Graph case: eigenvectors {uy} of L = Fourier modes Luy = Apug.

m Graph Fourier transform:

o~

f(k) = (f,ur)-
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Translations on the graph

Generalization of the convolution

m Localization around point a: convolution f * J,. Multiplication in Fourier
Classical: T.f(z) = f(x —a) = / f(k)e—Zﬂ'ikae%rikzdk
R

Graph: T.f(j) = Z f(n)ufl (a)un ()

m We prove that it stays localized. but the shape changes as well as the
£?-norm.
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Wavelets

Dilations on the graph
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Fourier domain
Dilation in the Fourier domain. Fourier domain = a line

define a continuous function g on R, , ”Wavelet kernel”,
dilate it at different scales gs(\) = g(sA),

take the discretized version of g; on the spectrum,
compute the inverse Fourier transform of each gs.
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Dilations on the graph (2)
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Characterizations of this localization

Hammond et al., Wavelets on graphs via spectral
graph theory, 2011 "
[ Shuman et al., Vertex-frequency analysis on graphs, 2013
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Wavelets

Wavelets (Hammond et al. ACHA, 2011)

m Eigendecomposition of the Laplacian. .
m Admissibility cond.

m Kernel g defined on the spectral domain. fgoo g(x)?dz/z < oo
g: R, — R continuous. .
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m Wavelet: 955 (j) = 32, g(sh)u(n)u(4)- '
m Wavelet transform: W f(s,n) = (f, ¥sn)- 03

m Invertible transform: add scaling function ¢
h (low-pass filter).
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Wavelets

A Gabor transform on graphs

Ingredients

m a window,
m a translation,

m a modulation.
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Modulations on the graph

Modulation: multiplication by a Fourier mode (eigenmode of the Laplacian).

My f(i) = VNug (i) £(0).
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Gabor frame

The set
MyTog(i) = VNuy(i) > gn)us, (a)un (i)
n
is a frame:
N N-1
AlFIE <D [(f. M Tag) < BIIfII3
a=1 b=0
0<NGOP<A= _min  N|T.gl?

B< malelTagllz
a

Shuman, Ricaud, Vandergheynst, Vertex-frequency analysis on graphs, 2013.
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Visualization
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Wavelets

Conclusion

Function behavior on the graph

m Globally smooth, slow variations of f,
m piecewise smooth (communities), spikes, fast variations in small regions,

m oscillations.

Representation and sparsity

m Piecewise smooth functions on graphs: Sparse representation in wavelets

m (localized) oscillations: sparsity in Gabor

Applications

B compression, compressive sensing,

m denoising,

m inpainting, label propagation...
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