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Lab Presentation

Swiss federal institute of technology

9,306 students of over 125 nationalities

316 laboratories, 319 faculty

Main focus: engineering, computer science, life science, biomedical engineering.
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Lab Presentation

Signal Processing Lab. 2

Prof. Pierre Vandergheynst
2 postdocs, 7 Phd Students, 1
engineer (software)

Signal and image processing

3D reconstruction, video tracking

Sparsity, compressive sensing

compressive sensing for MRI data

Optimization, inverse problems

Graphs and signal processing on graphs

Analysis of brain data (fMRI /dMRI), graph of music, transportation
networks

From theory to applications and to start-ups.
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Motivation

Graphs: models for many applications
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Motivation

Graphs: models for many applications

Nodes V, edges E , weight matrix w.

Data on graphs

A signal: a value or vector on each node f : V → RN or CN . Here N = 1.
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Motivation

Examples of applications
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Motivation

Focus: denoising and sparsity in wavelets

(1) signal, (2) noisy signal y, (3) smoothing: argminf‖y − f‖22 + γ〈f, Lf〉

Wavelet denoising. Wavelet transform + thresholding
Decay of wavelet coefficients argmina‖y − W ∗a‖22 + γ‖a‖1

B. Ricaud (LTS2, EPFL) Signal processing on graphs SPLab, Brno, 10/2013 7 / 20



Motivation

Analysis of functions, key concepts

Smoothness, regularity of functions on graphs

The Laplacian

Locality

Wavelet transform

Gabor transform
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The Laplacian

The graph Laplacian L

Regularity of a function on the graph

Smooth function: function with small variations from node to node. Measures
of the variations:
Gradient: a value for each edge `2(V)→ `2(E)

∇f(m,n) =
√
w(m,n)[f(n)− f(m)]

Laplacian: a value for each node `2(V)→ `2(V)

Lf(n) = ∇∗∇f(n) =
∑
m

w(m,n)[f(n)− f(m)]

Choice

+ graph Laplacian well studied in math + used in the wavelet definition → L.
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Global regularity

Global regularity

Regularity based on the Laplacian.

The graph Laplacian quadratic form (used for Tikhonov reg.)

‖f‖L := ‖∇f‖2 =
√
〈f, Lf〉.

Sobolev regularity (p ∈ N): ‖Lpf‖2 + ‖f‖2

〈f, L1f〉 = 0.14 〈f, L2f〉 = 1.31 〈f, L3f〉 = 1.81
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Wavelets

Wavelets (Hammond et al. ACHA, 2011)

Main challenges:

define translation,

define dilation.

Classical case:

translation: convolution with a delta, multiplication in the Fourier
domain,

dilation: inverse dilation in the Fourier domain.

Fourier on graphs

Fourier domain = spectral domain of the Laplacian.

Classical case: Leikx = − d2

dx2 e
ikx = k2eikx.

Graph case: eigenvectors {uk} of L = Fourier modes Luk = λkuk.

Graph Fourier transform:

f̂(k) = 〈f, uk〉.
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Wavelets

Translations on the graph

Generalization of the convolution

Localization around point a: convolution f ∗ δa. Multiplication in Fourier

Classical: Taf(x) = f(x− a) =

∫
R
f̂(k)e−2πikae2πikxdk

Graph: Taf(j) =
∑
n

f̂(n)u∗n(a)un(j)

We prove that it stays localized. but the shape changes as well as the
`2-norm.
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Wavelets

Dilations on the graph
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Fourier domain

Dilation in the Fourier domain. Fourier domain = a line

1 define a continuous function ĝ on R+, ”Wavelet kernel”,

2 dilate it at different scales ĝs(λ) = ĝ(sλ),

3 take the discretized version of ĝs on the spectrum,

4 compute the inverse Fourier transform of each ĝs.

ψs,a(j) =
∑
n

(ĝs(n).u∗n(a))un(j)
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Wavelets

Dilations on the graph (2)

B. Ricaud (LTS2, EPFL) Signal processing on graphs SPLab, Brno, 10/2013 14 / 20



Wavelets

Wavelets (Hammond et al. ACHA, 2011)
Eigendecomposition of the Laplacian.

Kernel ĝ defined on the spectral domain.
ĝ : R+ → R continuous.

Wavelet: ψs,n(j) =
∑
l ĝ(sλl)ul(n)ul(j).

Wavelet transform: Wf(s, n) = 〈f, ψs,n〉.
Invertible transform: add scaling function
h (low-pass filter).

Admissibility cond.∫∞
0
ĝ(x)2dx/x <∞
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Wavelets

A Gabor transform on graphs

Ingredients

a window,

a translation,

a modulation.
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Wavelets

Modulations on the graph

Modulation: multiplication by a Fourier mode (eigenmode of the Laplacian).

Mkf(i) =
√
Nuk(i)f(i).

B. Ricaud (LTS2, EPFL) Signal processing on graphs SPLab, Brno, 10/2013 17 / 20



Wavelets

Gabor frame

The set
MbTag(i) =

√
Nub(i)

∑
n

ĝ(n)u∗n(a)un(i)

is a frame:

A‖f‖22 ≤
N∑
a=1

N−1∑
b=0

|〈f,MbTag〉|2 ≤ B‖f‖22

0 < N |ĝ(0)|2 ≤ A = min
a={1,2,...,N}

N‖Tag‖22

B ≤ max
a

N‖Tag‖22

Shuman, Ricaud, Vandergheynst, Vertex-frequency analysis on graphs, 2013.

B. Ricaud (LTS2, EPFL) Signal processing on graphs SPLab, Brno, 10/2013 18 / 20



Wavelets

Visualization
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Wavelets

Conclusion

Function behavior on the graph

Globally smooth, slow variations of f ,

piecewise smooth (communities), spikes, fast variations in small regions,

oscillations.

Representation and sparsity

Piecewise smooth functions on graphs: Sparse representation in wavelets

(localized) oscillations: sparsity in Gabor

Applications

compression, compressive sensing,

denoising,

inpainting, label propagation...
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