Beyond incoherence and beyond sparsity: compressed sensing in the real world

Clarice Poon

1st November 2013

University of Cambridge, UK

Applied Functional and Harmonic Analysis Group

Head of Group

Anders Hansen

Research Associates

▶ Jonathan Ben-Artzi, Bogdan Roman

PhD Students

► Alex Bastounis, Milana Gataric, Alex Jones, Clarice Poon

Interests within sampling theory

- Computations in infinite dimensions,
- ▶ Inverse Problems, Nonuniform sampling
- Compressed sensing, including applications to medical imaging (MRI and CT), seismic tomography.

University of Cambridge, UK

Applied Functional and Harmonic Analysis Group

Head of Group

Anders Hansen

Research Associates

▶ Jonathan Ben-Artzi, Bogdan Roman

PhD Students

▶ Alex Bastounis, Milana Gataric, Alex Jones, Clarice Poon

Interests within sampling theory

- Computations in infinite dimensions,
- Inverse Problems, Nonuniform sampling
- Compressed sensing, including applications to medical imaging (MRI and CT), seismic tomography.

Related Group: Cambridge Image Analysis - lead by Carola Schönlieb.

▶ Image and video processing via PDE and variational based methods

Outline

Introduction

A new theory for compressed sensing (Joint work with Ben Adcock, Anders Hansen and Bogdan Roman)

Compressed sensing with non-orthonormal systems

Outline

Introduction

A new theory for compressed sensing (Joint work with Ben Adcock, Anders Hansen and Bogdan Roman)

Compressed sensing with non-orthonormal systems

A reconstruction problem in \mathbb{C}^N

▶ We are given two orthonormal bases

$$\Psi = \left\{ \psi_j \in \mathbb{C}^{N} : j = 1, \dots, N \right\}, \qquad \Phi = \left\{ \phi_j \in \mathbb{C}^{N} : j = 1, \dots, N \right\}$$

- We want to recover $x \in \mathbb{C}^N$ where the underlying signal f is $f = \sum_{j=1}^N x_j \phi_j$.
- We are given access to samples $\hat{f} = (\langle f, \psi_j \rangle)_{j=1}^N$.

A reconstruction problem in \mathbb{C}^N

▶ We are given two orthonormal bases

$$\Psi = \left\{ \psi_j \in \mathbb{C}^{N} : j = 1, \dots, N \right\}, \qquad \Phi = \left\{ \phi_j \in \mathbb{C}^{N} : j = 1, \dots, N \right\}$$

- We want to recover $x \in \mathbb{C}^N$ where the underlying signal f is $f = \sum_{j=1}^N x_j \phi_j$.
- We are given access to samples $\hat{f} = (\langle f, \psi_j \rangle)_{j=1}^N$.

We can construct a measurement matrix $U \in \mathbb{C}^{N \times N}$ with entries $u_{ij} = \langle \phi_j, \psi_i \rangle$.

$$Ux = \hat{f}$$

A reconstruction problem in \mathbb{C}^N

▶ We are given two orthonormal bases

$$\Psi = \{ \psi_j \in \mathbb{C}^N : j = 1, \dots, N \}, \qquad \Phi = \{ \phi_j \in \mathbb{C}^N : j = 1, \dots, N \}$$

- We want to recover $x \in \mathbb{C}^N$ where the underlying signal f is $f = \sum_{j=1}^N x_j \phi_j$.
- We are given access to samples $\hat{f} = (\langle f, \psi_j \rangle)_{j=1}^N$.

We can construct a measurement matrix $U \in \mathbb{C}^{N \times N}$ with entries $u_{ii} = \langle \phi_i, \psi_i \rangle$.

$$P_{\Omega}Ux = P_{\Omega}\hat{f}$$

where P_{Ω} is the projection matrix onto the index set $\Omega \subset \{1, \dots, N\}$.

Current theory

IF we have

1. Sparsity

$$|\{j: x_j \neq 0\}| = s << N,$$

2. Incoherence

$$\mu(U) := \max_{j,k=1,\ldots,N} \left| \left\langle \phi_j, \psi_k \right\rangle \right|^2 = \mathcal{O}\left(N^{-1}\right)$$

Then by choosing $s \log(N) \log(\epsilon^{-1} + 1)$ samples uniformly at random, x is recovered exactly with probability exceeding $1 - \epsilon$ by solving

$$\min_{\beta \in \mathbb{C}^N} \|\beta\|_1$$
 subject to $P_{\Omega} U \beta = P_{\Omega} \hat{f}$.

Current theory

IF we have

1. Sparsity

$$|\{j: x_j \neq 0\}| = s << N,$$

2. Incoherence

$$\mu(U) := \max_{j,k=1,...,N} \left| \langle \phi_j, \psi_k \rangle \right|^2 = \mathcal{O}\left(N^{-1}\right)$$

Then by choosing $s \log(N) \log(\epsilon^{-1} + 1)$ samples uniformly at random, x is recovered exactly with probability exceeding $1 - \epsilon$ by solving

$$\min_{eta \in \mathbb{C}^N} \|eta\|_1 \text{ subject to } P_\Omega U eta = P_\Omega \hat{f}.$$

- In MRI, we are interested in Fourier sampling with wavelet sparsity. But, the coherence between Fourier and any wavelet basis is $\mu = 1$.
- There are many important applications which are highly coherent.
 e.g. X-ray tomography, electron microscopy, reflection seismology.

Uniform random sampling

$$\min_{\beta\in\mathbb{C}^N}\|\beta\|_1 \text{ subject to } P_\Omega U_{df} V_{dw}^{-1}\beta = P_\Omega \hat{f}.$$
 5% subsampling map (1024×1024)

Test phantom constructed by Guerquin-Kern, Lejeune, Pruessmann, Unser, '12

Uniform random sampling

Variable density sampling

- ▶ Empirical solution (Lustig (2008), Candès (2011), Vandergheynst (2011)): take more samples at lower Fourier frequencies and less samples at higher Fourier frequencies.
- Q: How can we theoretically justify this approach?

Outline

Introduction

A new theory for compressed sensing (Joint work with Ben Adcock, Anders Hansen and Bogdan Roman)

Compressed sensing with non-orthonormal systems

Multi-level sampling

Divide the samples into r levels and let

- ▶ **N** = $(N_1, ..., N_r)$ with $1 \le N_1 < ... < N_r = N$,
- ▶ $\mathbf{m} = (m_1, ..., m_r)$ with $m_k \le N_k N_{k-1}$, $N_0 = 0$,
- ▶ Ω_k \subset $\{N_{k-1}+1,\ldots,N_k\}$ is chosen uniformly at random, $|\Omega_k|=m_k$,

We refer to the set

$$\Omega_{\mathbf{N},\mathbf{m}} = \Omega_1 \cup \dots \Omega_r$$

as an (N, m)-sampling scheme.

To understand the use of multi-level random sampling instead of uniform random sampling, we replace the standard ingredients of compressed sensing with more realistic assumptions:

 $\begin{array}{ccc} \mathsf{Sparsity} & \to & \mathsf{Asymptotic} \; \mathsf{sparsity} \\ \mathsf{Incoherence} & \to & \mathsf{Asymptotic} \; \mathsf{incoherence} \end{array}$

Asymptotic sparsity

Divide the reconstruction coefficients into levels and consider sparsity at each level: For $r \in \mathbb{N}$, let

- ▶ $\mathbf{M} = (M_1, ..., M_r)$ with $1 \le M_1 < ... < M_r = N$,
- $\mathbf{s} = (s_1, \dots, s_r)$ with $s_k \leq M_k M_{k-1}$, $M_0 = 0$,

We say that $x \in \mathbb{C}^N$ is (\mathbf{M},\mathbf{s}) -sparse if for each $k=1,\ldots,r$,

$$|\mathrm{supp}(x)\cap\{M_{k-1}+1,\ldots,M_k\}|\leq s_k.$$

Left: test image, Right: Percentage of wavelet coefficients at each scale which are greater than 10^{-3} in magnitude.

Asymptotic incoherence

We say that $U \in \mathbb{C}^{N \times N}$ is asymptotically incoherent if for large N,

$$\mu(P_K^{\perp}U), \mu(UP_K^{\perp}) = \mathcal{O}(K^{-1})$$

where P_K is the projection matrix onto the index set $\{1, \ldots, K\}$.

For any wavelet reconstruction basis with Fourier samples

$$\mu(U) = 1, \qquad \mu(P_K^{\perp}U), \mu(UP_K^{\perp}) = \mathcal{O}\left(K^{-1}\right).$$

Implication of asymptotic incoherence: Sample more at low Fourier frequencies where the local coherence is high, and subsample at higher Fourier frequencies.

Asymptotic incoherence

We say that $U \in \mathbb{C}^{N \times N}$ is asymptotically incoherent if for large N,

$$\mu(P_K^{\perp}U), \mu(UP_K^{\perp}) = \mathcal{O}(K^{-1})$$

where P_K is the projection matrix onto the index set $\{1, \dots, K\}$.

For any wavelet reconstruction basis with Fourier samples

$$\mu(U) = 1, \qquad \mu(P_K^{\perp}U), \mu(UP_K^{\perp}) = \mathcal{O}(K^{-1}).$$

Implication of asymptotic incoherence: Sample more at low Fourier frequencies where the local coherence is high, and subsample at higher Fourier frequencies.

Notation: Given vectors $\mathbf{M} = (M_1, \dots, M_r)$ and $\mathbf{N} = (N_1, \dots, N_r)$ with $0 = M_0 < M_1 < \dots < M_r = N$ and $0 = N_0 < N_1 < \dots < N_r = N$, let

$$\mu_{N,M}(U)[k,l] := \sqrt{\mu(P_{N_k}^{N_{k-1}}U) \cdot \mu(P_{N_k}^{N_{k-1}}UP_{M_l}^{M_{l-1}})},$$

with
$$P_{i_2}^{j_1}\alpha = (0, \dots, 0, \alpha_{i_1} + 1, \dots, \alpha_{i_2}, 0, \dots, 0).$$

Main theorem (Adcock, Hansen, P & Roman, '13)

For $\epsilon > 0$ and $1 \le k \le r$,

$$1 \gtrsim rac{ extstyle N_k - extstyle N_{k-1}}{m_k} \cdot (\log(\epsilon^{-1}) + 1) \cdot \left(\sum_{l=1}^r \mu_{ extstyle extstyle N, extstyle M} [k, l] \cdot s_l
ight) \cdot \log\left(extstyle N
ight),$$

and $m_k \gtrsim \hat{m}_k \cdot (\log(\epsilon^{-1}) + 1) \cdot \log(N)$, where \hat{m}_k satisfies

$$1 \gtrsim \sum_{k=1}^r \left(\frac{N_k - N_{k-1}}{\hat{m}_k} - 1 \right) \cdot \mu_{\mathsf{N},\mathsf{M}}[k,l] \cdot \tilde{\mathsf{s}}_k, \quad \forall l = 1, \ldots, r,$$

 $\sum_{k=1}^r \tilde{s}_k \leq s, \quad \tilde{s}_k \leq \max\{||P_{N_k}^{N_{k-1}}U\xi||^2 : ||\xi||_{\infty} = 1, \ \xi \text{ is } (\mathbf{M},\mathbf{s})\text{-sparse}\}.$ Suppose that ξ is a minimizer of

$$\min_{\eta \in \mathbb{C}^N} \left\| \eta \right\|_1 \text{ subject to } \left\| P_{\Omega_{\mathsf{N},\mathsf{m}}} U \eta - P_{\Omega_{\mathsf{N},\mathsf{m}}} \hat{f} \right\| \leq \delta.$$

Then, with probability exceeding $1 - s\epsilon$, we have that

$$\|\xi - x\| < C \cdot (\delta \cdot \sqrt{\kappa} \cdot (1 + L \cdot \sqrt{s}) + \sigma_{\mathbf{M} s}(f)).$$

for constant
$$C$$
, $s:=\sum_{k=1}^r s_k$, $\kappa=\max_{1\leq k\leq r}\Big\{\frac{N_k-N_{k-1}}{m_k}\Big\}$, $L=1+\frac{\sqrt{\log(\epsilon^{-1})}}{\log(4\kappa N\sqrt{s})}$ and $\sigma_{\mathbf{M},\mathbf{s}}(f)$ is the best ℓ^1 approximation of f by an (\mathbf{M},\mathbf{s}) -sparse vector.

Fourier sampling and wavelet recovery (Adcock, Hansen, P & Roman, '13)

If the sampling levels and sparsity levels correspond to wavelet scales, then the number of samples required at the k^{th} Fourier sampling level is

$$m_k \gtrsim \mathsf{Log} \; \mathsf{factors} imes (s_k + \sum_{j
eq k} s_j A^{-|j-k|})$$

where A is some constant dependent on the smoothness and the number of vanishing moments of the wavelet basis.

The test phantom

Test phantom constructed by Guerquin-Kern, Lejeune, Pruessmann, Unser, '12

Resolution dependence (5% samples, varying resolution)

Asymptotic sparsity and asymptotic incoherence are only witnessed when N is large. Thus, multi-level sampling only reaps their benefits for large values of N and the success of compressed sensing is resolution dependent.

Resolution dependence (5% samples, varying resolution)

Existing theory on compressed sensing has been based constructing one sampling pattern for the recovery of all s-sparse signals.

However, recall our conditions

$$\begin{split} &1 \gtrsim \frac{\textit{N}_k - \textit{N}_{k-1}}{\textit{m}_k} \cdot (\log(\epsilon^{-1}) + 1) \cdot \left(\sum_{l=1}^r \mu_{\mathsf{N},\mathsf{M}}[\textit{k},\textit{l}] \cdot \textit{s}_\textit{l} \right) \cdot \log\left(\textit{N}\right), \\ &1 \gtrsim \sum_{k=1}^r \left(\frac{\textit{N}_k - \textit{N}_{k-1}}{\hat{m}_k} - 1 \right) \cdot \mu_{\mathsf{N},\mathsf{M}}[\textit{k},\textit{l}] \cdot \tilde{\textit{s}}_\textit{k}, \quad \forall \textit{l} = 1, \dots, r, \end{split}$$

Clearly, our sampling pattern should depend both on the signal structure and local incoherences.

We aim to recover wavelet coefficients x from 10% Fourier samples.

Original image (1024×1024)

Signal structure of x

For some multi-level sampling scheme, $\Omega_{N,m}$

By solving

 $\begin{aligned} \min_{\eta \in \mathbb{C}^N} \|\eta\|_1 & \text{ subject to} \\ \left\|P_{\Omega_{\mathbf{N},\mathbf{m}}} U \eta - P_{\Omega_{\mathbf{N},\mathbf{m}}} \hat{f} \right\| \leq \delta \end{aligned}$

Reconstruction

We now flip the coefficient vector x, then x_{flip} has the same sparsity of x but different signal structure.

Signal structure of x_{flip}

If only sparsity matters...

...then using the same sampling pattern $\Omega_{\textbf{N},\textbf{m}}$

$$\min_{\boldsymbol{\eta} \in \mathbb{C}^{N}} \left\| \boldsymbol{\eta} \right\|_{1}$$
 subject to

$$\left\| P_{\Omega_{\mathbf{N},\mathbf{m}}} U \eta - P_{\Omega_{\mathbf{N},\mathbf{m}}} \hat{f}_{flip} \right\| \leq \delta$$

will recover x_{flip} . So we can recover $x = (x_{flip})_{flip}$.

The reconstruction

So signal structure matters...

This observation of signal dependence opens up the possibility of designing optimal sampling patterns for specific types of signals.

Outline

Introduction

A new theory for compressed sensing
(Joint work with Ben Adcock, Anders Hansen and Bogdan Roman)

Compressed sensing with non-orthonormal systems

A more general problem

We have explained the use of multi-level sampling schemes for orthonormal systems. But...

- Our sparsifying dictionary could be a frame (e.g. shearlets), or we may want to minimize with a TV norm.
- Our sampling vectors need not form an orthonormal basis (e.g. nonuniform Fourier samples).

A more general problem

We aim to extend the theory to understand how local incoherence and local signal structures affect the minimizers of

$$\min_{\eta \in \mathbb{C}^N} \|D\eta\|_1 \text{ subject to } \left\|P_{\Omega_{\mathbf{N},\mathbf{m}}} U \eta - P_{\Omega_{\mathbf{N},\mathbf{m}}} \hat{f} \right\| \leq \delta$$

where
$$\hat{f} = Ux$$
, $U \in \mathbb{C}^{M \times N}$, $D \in \mathbb{C}^{d \times N}$.

We will focus on the following two examples:

Case I: D is the finite differences matrix and U is the Fourier matrix.

Case II: D = I and U is the matrix for shearlets with Fourier sampling.

Co-sparsity (Introduced by Elad et al, '11)

$$\min_{\boldsymbol{\eta} \in \mathbb{C}^N} \left\| \boldsymbol{D} \boldsymbol{\eta} \right\|_1 \text{ subject to } \left\| P_{\Omega_{\mathbf{N},\mathbf{m}}} \boldsymbol{U} \boldsymbol{\eta} - P_{\Omega_{\mathbf{N},\mathbf{m}}} \hat{\boldsymbol{f}} \right\| \leq \delta$$

- ▶ If the rows of D are highly redundant, then Dx cannot be sparse unless x = 0 \Longrightarrow focus on the zeros of Dx.
- ► The co-sparse set is the index set Λ for which $P_Λ Dx = 0$. Let $\dim \text{Null}(P_Λ D) = s$.

Let
$$\{w_j: j=1,\ldots,s\}$$
 be an orthonormal basis for $\mathrm{Null}(P_\Lambda D)$ and $W_\Lambda=(w_1|w_2|\ldots|w_s)$.

Assumptions and incoherence

$$\min_{\eta \in \mathbb{C}^N} \left\| D \eta \right\|_1 \text{ subject to } \left\| P_{\Omega_{\mathbf{N},\mathbf{m}}} U \eta - P_{\Omega_{\mathbf{N},\mathbf{m}}} \hat{f} \right\| \leq \delta.$$

- We require that $X := W_{\Lambda}(W_{\Lambda}^* U^* U W_{\Lambda})^{-1} W_{\Lambda}^*$ exists. (C_{inv})
- ► The following conditions determine the types of signals that can be recovered (cf. notions of identifiability by Fuchs '04, Tropp '04, Peyré '11):

$$\left\| (D^* P_{\Lambda})^{\dagger} U^* U X W_{\Lambda} \right\|_{\infty \to \infty} < 1 \tag{C_{id} 1}$$

$$\inf_{u \in \operatorname{Null}(D^*P_{\Lambda})} \left\| (D^*P_{\Lambda})^{\dagger} D^* P_{\Lambda^c} \operatorname{sgn}(P_{\Lambda^c} Dx) - u \right\|_{\infty} < 1. \tag{C_{id}2}$$

▶ Coherence is between U and $\text{Null}(P_{\Lambda}D) = \text{span}\{w_j : j = 1, ..., s\}$: let

$$\mu_{\mathbf{N},\mathbf{M}}[k] = \max \left\{ \mu_{\mathbf{N},\mathbf{M}}(\mathit{UW}_{\Lambda})[k], \mu_{\mathbf{N},\mathbf{M}}(\mathit{UXW}_{\Lambda})[k], \mu_{\mathbf{N},\mathbf{M}}(\mathit{U}(P_{\Lambda}D)^{\dagger})[k] \right\}$$

$$\mu_{\mathbf{N},\mathbf{M}}[k,j] = \sqrt{\mu_{\mathbf{N},\mathbf{M}}[k] \cdot \max\left\{\mu_{\mathbf{N},\mathbf{M}}(UW_{\Lambda})[k,j],\mu_{\mathbf{N},\mathbf{M}}(UXW_{\Lambda})[k,j]\right\}}$$

Recovery statement (P.'13)

Let $\epsilon > 0$ and $\hat{f} = Ux$. Recall $X := W_{\Lambda}(W_{\Lambda}^* U^* U W_{\Lambda})^{-1} W_{\Lambda}^*$. For

$$m_k \gtrsim \log(\epsilon^{-1} + 1) \cdot \log(\mathsf{KN}\sqrt{s}) \cdot (\mathsf{N}_k - \mathsf{N}_{k-1}) \cdot \sum_{i=1}^r \mu_{\mathsf{N},\mathsf{M}}[k,j] \cdot s_j,$$

and $m_k \gtrsim \log(\epsilon^{-1} + 1) \cdot \log(KN\sqrt{s}) \cdot \hat{m}_k$ with

$$1 \gtrsim \sum_{k=1}^{r} \left(\frac{N_k - N_{k-1}}{\hat{m}_k} - 1 \right) \cdot \mu_{\mathsf{N},\mathsf{M}}[k] \cdot \tilde{\mathsf{s}}_k$$

 $\sum_{k=1}^r \tilde{s}_k \leq \|UX\|^2 s, \quad \tilde{s}_k \leq \max\{||P_{N_k}^{N_{k-1}}UXW_{\Lambda}\xi||^2 : ||\xi||_{\infty} = 1\}.$ Suppose that ξ is a minimizer of

$$\min_{\eta \in \mathbb{C}^N} \|D\eta\|_1 \text{ subject to } \left\|P_{\Omega_{\mathbf{N},\mathbf{m}}} U \eta - P_{\Omega_{\mathbf{N},\mathbf{m}}} \hat{f} \right\| \leq \delta.$$

Then, with probability exceeding $(1 - s\epsilon)$,

$$\|\xi - x\| \le C \cdot \left\| (P_{\Lambda}D)^{\dagger} \right\|_{1 \to 2} \cdot \left(\left(\sqrt{\|X\|} + \sqrt{s} \cdot L \right) \cdot \sqrt{\kappa} \cdot \delta + \|P_{\Lambda}Dx\|_{1} \right).$$

for constant C, $s := \sum_{k=1}^{r} s_k$ and $\kappa = \max_{1 \le k \le r} \frac{N_k - N_{k-1}}{m_k}$.

Case I: Total variation with Fourier samples

U is the unitary Discrete Fourier matrix,

$$D = \begin{pmatrix} -1 & +1 & & & 0 \\ & -1 & +1 & & \\ & & \ddots & \ddots & \\ 0 & & & -1 & +1 \end{pmatrix}$$

▶ Given Λ , if $\Lambda^c = \{\gamma_j : j = 1, ..., s - 1\}$ with $\gamma_0 = 0$, $\gamma_s = 2^n$, then

$$\mathrm{Null}(P_{\Lambda}D) = \mathrm{span}\,\Big\{(\gamma_j - \gamma_{j-1})^{-1/2}\chi_{(\gamma_{j-1},\gamma_j]}: j = 1,\ldots,s\Big\}.$$

- ► (C_{inv}) holds, $(C_{id}1)$ is trivial and $(C_{id}2)$ holds if there is no stair-casing: $\not\exists$ j s.t. $(P_{\Lambda^c}Dx)_j = (P_{\Lambda^c}Dx)_{j+1} = \pm 1$. (Peyré et al, 2011)
- $\begin{array}{l} \blacktriangleright \ \, \mu_{\mathsf{N},\mathsf{M}}[k] = \mathcal{O}\left(\frac{1}{N_{k-1}}\right)\!, \ \mu_{\mathsf{N},\mathsf{M}}[k,j] = \mathcal{O}\left(\min\left\{\frac{1}{N_{k-1}},\sqrt{\frac{L_{j-1}}{N_{k-1}2^n}}\right\}\right) \ \text{where} \\ L_j \ \text{is the shortest length of the support of vectors in level } j. \end{array}$

Case II: Shearlet reconstructions from Fourier samples

$$\min_{\eta \in \mathbb{C}^N} \|\eta\|_1 \ \text{ subject to } \ \left\|P_{\Omega_{\mathbf{N},\mathbf{m}}} U_{\mathit{df}} V_{\mathit{ds}}^* \eta - P_{\Omega_{\mathbf{N},\mathbf{m}}} \hat{f} \right\| \leq \delta.$$

where V_{ds} is some (tight) discrete shearlet transform. Let a_j be the j^{th} row of V_{ds} .

- ▶ $\Lambda^c =: \Delta$ indexes the sparse shearlet representation. We can assume that $\{a_j: j \in \Delta\}$ is a linearly independent set. In particular, $X = P_{\Delta}(P_{\Delta}U^*UP_{\Delta})^{-1}P_{\Delta} = P_{\Delta}(P_{\Delta}V_{ds}V_{ds}^*P_{\Delta})^{-1}P_{\Delta}$ exists and (C_{inv}) holds.
- $ightharpoonup (C_{id}2)$ is trivial and $(C_{id}1)$ is true whenever

$$\sup_{i \not\in \Delta} \sum_{j \in \Delta} |\langle a_i, a_j \rangle| + \max_{i \in \Delta} \sum_{j \in \Delta, j \neq i} |\langle a_i, a_j \rangle| < 1.$$

Note that the Gram matrices of shearlets/curvelets are known to have strong off diagonal decay properties (Grohs & Kutyniok, 2012).

$$\blacktriangleright \ \mu(P_K^{\perp}U) = \mathcal{O}\left(K^{-1}\right), \quad \mu(UP_K^{\perp}) = \mathcal{O}\left(K^{-1}\right).$$

Example

$$\min_{\boldsymbol{\eta} \in \mathbb{C}^N} \left\| \boldsymbol{\eta} \right\|_1 \text{ subject to } \left\| P_{\Omega_{\mathbf{N},\mathbf{m}}} U_{df} V_*^{-1} \boldsymbol{\eta} - P_{\Omega_{\mathbf{N},\mathbf{m}}} \hat{\boldsymbol{f}} \right\| \leq \delta.$$

6.25% subsampling map (2048×2048)

Image (2048×2048)

Courtesy of Anders Hansen and Bogdan Roman

Example

Courtesy of Anders Hansen and Bogdan Roman

Example

Courtesy of Anders Hansen and Bogdan Roman

Conclusions

- ► There is a gap between the theory and the use of compressed sensing in many real world problems.
- By introducing notions of asymptotic incoherence, asymptotic sparsity and multi-level sampling, we can explain the success of variable density sampling schemes.
- ▶ Two key consequences of our theory:
 - (1) Compressed sensing is resolution dependent.
 - (2) Successful recovery is signal dependent, thus, an understanding of local incoherence and sparsity patterns of certain types of signals can lead to optimal sampling patterns.
- ► These ideas are applicable to non-orthonormal systems, including frames and total variation.
- ▶ Breaking the coherence barrier: asymptotic incoherence and asymptotic sparsity in compressed sensing. Adcock, Hansen, Poon & Roman '13

Not covered in this talk: Extension to infinite dimensional framework

▶ We recovered $x \in \mathbb{C}^N$ from Ux, $U \in \mathbb{C}^{N \times N}$. But the MRI problem samples the continuous Fourier transform and is infinite dimensional. Direct application of finite dimensional methods results in artefacts.