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A reconstruction problem in CN

I We are given two orthonormal bases

Ψ =
{
ψj ∈ CN : j = 1, . . . ,N

}
, Φ =

{
φj ∈ CN : j = 1, . . . ,N

}
I We want to recover x ∈ CN where the underlying signal f is

f =
∑N

j=1 xjφj .

I We are given access to samples f̂ = (〈f , ψj〉)N
j=1.

We can construct a measurement matrix U ∈ CN×N with entries
uij = 〈φj , ψi 〉.

PΩ

Ux =

PΩ

f̂

where PΩ is the projection matrix onto the index set Ω ⊂ {1, . . . ,N}.
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Current theory

IF we have

1. Sparsity
|{j : xj 6= 0}| = s << N,

2. Incoherence

µ(U) := max
j,k=1,...,N

|〈φj , ψk〉|2 = O
(
N−1

)
Then by choosing s log(N) log(ε−1 + 1) samples uniformly at random, x
is recovered exactly with probability exceeding 1− ε by solving

min
β∈CN

‖β‖1 subject to PΩUβ = PΩ f̂ .

I In MRI, we are interested in Fourier sampling with wavelet sparsity.
But, the coherence between Fourier and any wavelet basis is µ = 1.

I There are many important applications which are highly coherent.
e.g. X-ray tomography, electron microscopy, reflection seismology.
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Uniform random sampling

min
β∈CN

‖β‖1 subject to PΩUdf V
−1
dw β = PΩ f̂ .

5% subsampling map Original
(1024x1024)

Test phantom constructed by Guerquin-Kern, Lejeune, Pruessmann, Unser, ’12



Uniform random sampling

5% subsampling map Reconstruction
(1024x1024) (1024x1024)



Variable density sampling

5% subsampling map Reconstruction
(1024x1024) (1024x1024)

I Empirical solution (Lustig (2008), Candès (2011), Vandergheynst
(2011)): take more samples at lower Fourier frequencies and less
samples at higher Fourier frequencies.

I Q: How can we theoretically justify this approach?
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Multi-level sampling

Divide the samples into r levels and let

I N = (N1, . . . ,Nr ) with 1 ≤ N1 < . . . < Nr = N,

I m = (m1, . . . ,mr ) with mk ≤ Nk − Nk−1, N0 = 0,

I Ωk ⊂ {Nk−1 + 1, . . . ,Nk} is chosen uniformly at random,
|Ωk | = mk ,

We refer to the set
ΩN,m = Ω1 ∪ . . .Ωr

as an (N,m)-sampling scheme.



To understand the use of multi-level random sampling instead of uniform
random sampling, we replace the standard ingredients of compressed
sensing with more realistic assumptions:

Sparsity → Asymptotic sparsity
Incoherence → Asymptotic incoherence



Asymptotic sparsity
Divide the reconstruction coefficients into levels and consider sparsity at
each level: For r ∈ N, let

I M = (M1, . . . ,Mr ) with 1 ≤ M1 < . . . < Mr = N,
I s = (s1, . . . , sr ) with sk ≤ Mk −Mk−1, M0 = 0,

We say that x ∈ CN is (M, s)-sparse if for each k = 1, . . . , r ,

|supp(x) ∩ {Mk−1 + 1, . . . ,Mk}| ≤ sk .
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Left: test image, Right: Percentage of wavelet coefficients at each scale which

are greater than 10−3 in magnitude.



Asymptotic incoherence
We say that U ∈ CN×N is asymptotically incoherent if for large N,

µ(P⊥K U), µ(UP⊥K ) = O
(
K−1

)
where PK is the projection matrix onto the index set {1, . . . ,K}.

For any wavelet reconstruction basis with Fourier samples

µ(U) = 1, µ(P⊥K U), µ(UP⊥K ) = O
(
K−1

)
.

Implication of asymptotic incoherence: Sample more at low Fourier
frequencies where the local coherence is high, and subsample at higher
Fourier frequencies.

Notation: Given vectors M = (M1, . . . ,Mr ) and N = (N1, . . . ,Nr ) with
0 = M0 < M1 < · · · < Mr = N and 0 = N0 < N1 < . . . < Nr = N, let

µN,M(U)[k, l ] :=
√
µ(P

Nk−1

Nk
U) · µ(P

Nk−1

Nk
UP

Ml−1

Ml
),

with P j1
j2
α = (0, . . . , 0, αj1 + 1, . . . , αj2 , 0, . . . , 0).
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Main theorem (Adcock, Hansen, P & Roman, ’13)
For ε > 0 and 1 ≤ k ≤ r ,

1 &
Nk − Nk−1

mk
· (log(ε−1) + 1) ·

(
r∑

l=1

µN,M[k , l ] · sl

)
· log (N),

and mk & m̂k · (log(ε−1) + 1) · log (N) , where m̂k satisfies

1 &
r∑

k=1

(
Nk − Nk−1

m̂k
− 1

)
· µN,M[k , l ] · s̃k , ∀l = 1, . . . , r ,

∑r
k=1 s̃k ≤ s, s̃k ≤ max{||PNk−1

Nk
Uξ||2 : ||ξ||∞ = 1, ξ is (M, s)-sparse}.

Suppose that ξ is a minimizer of

min
η∈CN

‖η‖1 subject to
∥∥∥PΩN,mUη − PΩN,m f̂

∥∥∥ ≤ δ.
Then, with probability exceeding 1− sε, we have that

‖ξ − x‖ ≤ C ·
(
δ ·
√
κ ·
(
1 + L ·

√
s
)

+ σM,s(f )
)
,

for constant C , s :=
∑r

k=1 sk , κ = max
1≤k≤r

{
Nk−Nk−1

mk

}
, L = 1 +

√
log(ε−1)

log(4κN
√

s)

and σM,s(f ) is the best `1 approximation of f by an (M, s)-sparse vector.



Fourier sampling and wavelet recovery
(Adcock, Hansen, P & Roman, ’13)

If the sampling levels and sparsity levels correspond to wavelet scales,
then the number of samples required at the k th Fourier sampling level is

mk & Log factors× (sk +
∑
j 6=k

sjA
−|j−k|)

where A is some constant dependent on the smoothness and the number
of vanishing moments of the wavelet basis.



The test phantom

Test phantom constructed by Guerquin-Kern, Lejeune, Pruessmann, Unser, ’12



Resolution dependence (5% samples, varying resolution)

Asymptotic sparsity and asymptotic incoherence are only witnessed when
N is large. Thus, multi-level sampling only reaps their benefits for large
values of N and the success of compressed sensing is resolution
dependent.

256x256

Error:

19.86%

512x512

Error:

10.69%



Resolution dependence (5% samples, varying resolution)
1024x1024

Error:

7.35%

2048x2048

Error:

4.87%

4096x4096

Error:

3.06%



The optimal sampling strategy is signal dependent

Existing theory on compressed sensing has been based constructing one
sampling pattern for the recovery of all s-sparse signals.

However, recall our conditions

1 &
Nk − Nk−1

mk
· (log(ε−1) + 1) ·

(
r∑

l=1

µN,M[k , l ] · sl

)
· log (N) ,

1 &
r∑

k=1

(
Nk − Nk−1

m̂k
− 1

)
· µN,M[k , l ] · s̃k , ∀l = 1, . . . , r ,

Clearly, our sampling pattern should depend both on the signal structure
and local incoherences.



The optimal sampling strategy is signal dependent

We aim to recover wavelet coefficients x from 10% Fourier
samples.

Original image (1024x1024) Signal structure of x
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x105

Truncated (max = 151.58)



The optimal sampling strategy is signal dependent

For some multi-level sampling scheme, ΩN,m

By solving

min
η∈CN

‖η‖1 subject to∥∥∥PΩN,mUη − PΩN,m f̂
∥∥∥ ≤ δ

Reconstruction



The optimal sampling strategy is signal dependent

We now flip the coefficient vector x , then xflip has the same
sparsity of x but different signal structure.

Signal structure of xflip

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

x105

Truncated (max = 151.58)

If only sparsity matters...

...then using the same sampling
pattern ΩN,m

min
η∈CN

‖η‖1 subject to∥∥∥PΩN,mUη − PΩN,m f̂flip

∥∥∥ ≤ δ
will recover xflip. So we can recover
x = (xflip)flip.



The optimal sampling strategy is signal dependent

The reconstruction So signal structure matters...

This observation of signal
dependence opens up the possibility
of designing optimal sampling
patterns for specific types of signals.
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A more general problem

We have explained the use of multi-level sampling schemes for
orthonormal systems. But...

I Our sparsifying dictionary could be a frame (e.g. shearlets), or we
may want to minimize with a TV norm.

I Our sampling vectors need not form an orthonormal basis (e.g.
nonuniform Fourier samples).



A more general problem

We aim to extend the theory to understand how local incoherence and
local signal structures affect the minimizers of

min
η∈CN

‖Dη‖1 subject to
∥∥∥PΩN,mUη − PΩN,m f̂

∥∥∥ ≤ δ
where f̂ = Ux , U ∈ CM×N , D ∈ Cd×N .

We will focus on the following two examples:

Case I: D is the finite differences matrix and U is the Fourier matrix.

Case II: D = I and U is the matrix for shearlets with Fourier sampling.



Co-sparsity
(Introduced by Elad et al, ’11)

min
η∈CN

‖Dη‖1 subject to
∥∥∥PΩN,mUη − PΩN,m f̂

∥∥∥ ≤ δ
I If the rows of D are highly redundant, then Dx cannot be sparse

unless x = 0 =⇒ focus on the zeros of Dx .

I The co-sparse set is the index set Λ for which PΛDx = 0. Let
dimNull(PΛD) = s.

Let {wj : j = 1, . . . , s} be an orthonormal basis for Null(PΛD) and

WΛ = (w1|w2| . . . |ws) ,



Assumptions and incoherence

min
η∈CN

‖Dη‖1 subject to
∥∥∥PΩN,mUη − PΩN,m f̂

∥∥∥ ≤ δ.
I We require that X := WΛ(W ∗ΛU

∗UWΛ)−1W ∗Λ exists. (Cinv )

I The following conditions determine the types of signals that can be
recovered (cf. notions of identifiability by Fuchs ’04, Tropp ’04, Peyré ’11):∥∥(D∗PΛ)†U∗UXWΛ

∥∥
∞→∞ < 1 (Cid 1)

inf
u∈Null(D∗PΛ)

∥∥(D∗PΛ)†D∗PΛc sgn(PΛcDx)− u
∥∥
∞ < 1. (Cid 2)

I Coherence is between U and Null(PΛD) = span {wj : j = 1, . . . , s}:
let

µN,M[k] = max
{
µN,M(UWΛ)[k], µN,M(UXWΛ)[k], µN,M(U(PΛD)†)[k]

}
µN,M[k , j ] =

√
µN,M[k] ·max {µN,M(UWΛ)[k , j ], µN,M(UXWΛ)[k, j ]}



Recovery statement (P.’13)
Let ε > 0 and f̂ = Ux . Recall X := WΛ(W ∗ΛU

∗UWΛ)−1W ∗Λ . For

mk & log(ε−1 + 1) · log(KN
√
s) · (Nk − Nk−1) ·

r∑
j=1

µN,M[k, j ] · sj ,

and mk & log(ε−1 + 1) · log(KN
√
s) · m̂k with

1 &
r∑

k=1

(
Nk − Nk−1

m̂k
− 1

)
· µN,M[k] · s̃k

∑r
k=1 s̃k ≤ ‖UX‖2 s, s̃k ≤ max{||PNk−1

Nk
UXWΛξ||2 : ||ξ||∞ = 1}.

Suppose that ξ is a minimizer of

min
η∈CN

‖Dη‖1 subject to
∥∥∥PΩN,mUη − PΩN,m f̂

∥∥∥ ≤ δ.
Then, with probability exceeding (1− sε),

‖ξ − x‖ ≤ C ·
∥∥(PΛD)†

∥∥
1→2
·
((√

‖X‖+
√
s · L

)
·
√
κ · δ + ‖PΛDx‖1

)
.

for constant C , s :=
∑r

k=1 sk and κ = max
1≤k≤r

Nk−Nk−1

mk
.



Case I: Total variation with Fourier samples

U is the unitary Discrete Fourier matrix,

D =


−1 +1 0

−1 +1
. . .

. . .

0 −1 +1


I Given Λ, if Λc = {γj : j = 1, . . . , s − 1} with γ0 = 0, γs = 2n, then

Null(PΛD) = span
{

(γj − γj−1)−1/2χ(γj−1,γj ] : j = 1, . . . , s
}
.

I (Cinv ) holds, (Cid 1) is trivial and (Cid 2) holds if there is no
stair-casing: 6 ∃ j s.t. (PΛcDx)j = (PΛcDx)j+1 = ±1. (Peyré et al, 2011)

I µN,M[k] = O
(

1
Nk−1

)
, µN,M[k , j ] = O

(
min

{
1

Nk−1
,
√

Lj−1

Nk−12n

})
where

Lj is the shortest length of the support of vectors in level j .



Case II: Shearlet reconstructions from Fourier samples

min
η∈CN

‖η‖1 subject to
∥∥∥PΩN,mUdf V

∗
dsη − PΩN,m f̂

∥∥∥ ≤ δ.
where Vds is some (tight) discrete shearlet transform. Let aj be the j th

row of Vds .

I Λc =: ∆ indexes the sparse shearlet representation. We can assume
that {aj : j ∈ ∆} is a linearly independent set. In particular,
X = P∆(P∆U∗UP∆)−1P∆ = P∆(P∆VdsV

∗
dsP∆)−1P∆ exists and

(Cinv ) holds.

I (Cid 2) is trivial and (Cid 1) is true whenever

sup
i 6∈∆

∑
j∈∆

|〈ai , aj〉|+ max
i∈∆

∑
j∈∆,j 6=i

|〈ai , aj〉| < 1.

Note that the Gram matrices of shearlets/curvelets are known to
have strong off diagonal decay properties (Grohs & Kutyniok, 2012 ).

I µ(P⊥K U) = O
(
K−1

)
, µ(UP⊥K ) = O

(
K−1

)
.



Example

min
η∈CN

‖η‖1 subject to
∥∥∥PΩN,mUdf V

−1
∗ η − PΩN,m f̂

∥∥∥ ≤ δ.
6.25% subsampling map Image

(2048x2048) (2048x2048)

Courtesy of Anders Hansen and Bogdan Roman



Example

DB-4 reconstruction Shearlet reconstruction
(2048x2048) (2048x2048)

Courtesy of Anders Hansen and Bogdan Roman



Example

Curvelet reconstruction Contourlet reconstruction
(2048x2048) (2048x2048)

Courtesy of Anders Hansen and Bogdan Roman



Conclusions
I There is a gap between the theory and the use of compressed

sensing in many real world problems.

I By introducing notions of asymptotic incoherence, asymptotic
sparsity and multi-level sampling, we can explain the success of
variable density sampling schemes.

I Two key consequences of our theory:
(1) Compressed sensing is resolution dependent.
(2) Successful recovery is signal dependent, thus, an understanding of

local incoherence and sparsity patterns of certain types of signals can
lead to optimal sampling patterns.

I These ideas are applicable to non-orthonormal systems, including
frames and total variation.

I Breaking the coherence barrier: asymptotic incoherence and asymptotic

sparsity in compressed sensing. Adcock, Hansen, Poon & Roman ’13

Not covered in this talk: Extension to infinite dimensional framework

I We recovered x ∈ CN from Ux , U ∈ CN×N . But the MRI problem
samples the continuous Fourier transform and is infinite dimensional.
Direct application of finite dimensional methods results in artefacts.
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