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The vocal tract

http://pegasus.cc.ucf.edu/ cnye/vocal
tract pic.htm

Roughly divided into three cavities
Pharyngeal
Oral
Nasal

Oral vowel production
Nasal section closed off by velum

Nasals and nasalized vowels
Nasal section coupled

Laterals (e.g. /l/)
Airflow on one (or both) sides of
the tongue
Generates side branches
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Source-filter model

http://health.tau.ac.il/Communication Disorders/noam

Glottis acts as source (pulse train)
Vocal tract acts as ’slowly’ varying linear filter
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Source-filter model

Source and filter often assumed independent
Glottal opening and closing changes VT filter

Glottal pulse is not ideal pulse
Effect of glottis not linear
Still the source-filter model is useful

Commonly used in phonetics
Model parameters can be used for speaker recognition
Useful for formant tracking
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All-pole model

All-pole model captures resonances or formants
Autoregressive model (AR), linear predictive coding (LPC)

y(n) =

p∑
i=1

aiy(n− i) + x(n)

Works well with vowels
Easy to estimate

Solve the Yule-Walker equations (Toeplitz) with the
Levinson-Durbin algorithm

γ(n) =

p∑
i=1

aiγ(n− i) + σ2
xδn,0

Direct link to simple physical model

Correlation function...γ(i) = E[y(n)y(n− i)]
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Pole-zero models

Nasal spectra show spectral dips
Oral cavities and paranasal cavities act as resonators
Side branches cause decrease in energy
Pole-zero model more efficient

Problems with pole-zero models
Trickier to estimate
Requires in general non-linear methods
Correspondence to physical model more difficult
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All-pole vs. pole-zero model ctd.
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● Envelope
(15,0), RMS= 0.56
(10,5), RMS= 0.46
(15,5), RMS= 0.45
(20,20), RMS= 0.2
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Pole-zero models

Auto Regressive Moving Average (ARMA)

y(n)−
p∑

k=1

aky(n− k) =

q∑
j=0

bjx(n− j) (1)

Pole-zero model

ŷ(ω) =

q∑
j=0

bje−iωk

p∑
k=0

ake−iωk
x̂(ω) =

B
(
e−iω, θ

)
A (e−iω, θ)

x̂(ω) (2)

Estimation in general a non-linear problem
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Time or frequency?

Time domain
Not suitable for perceputal frequency scales

Spectral domain
Perceputal frequency scales can be included
Logarithmic spectrum can be used
Spectral envelope needs to be extracted

Harmonics for voiced segments due to glottis
Envelope represents VT transfer function (+ glottal pulse)
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Spectral error measures

Linear spectrum
Assumptions about phase are necessary (minimum phase)
Speech signal is not minimum phase (glottis)

Log spectrum

θ = argminθ′
K−1∑
k=0

∣∣∣∣∣log ŷ (ωk)− log
B
(
eiωk , θ′

)
A (eiωk , θ′)

∣∣∣∣∣
2

Perceptually relevant
Log amplitude spectrum

θ = argminθ′
K−1∑
k=0

∣∣∣∣∣log |ŷ (ωk)| − log

∣∣∣∣∣B
(
eiωk , θ′

)
A (eiωk , θ′)

∣∣∣∣∣
∣∣∣∣∣
2

Phase ignored, minimum phase system easy to obtain
Cepstral domain

Computationally efficient (only for linear frequency )
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Optimization Methods

Estimate numerator and denominator separately
Recursive Methods

Do not necessarily converge to local minimum
Non-linear optimization

Newton method
Calculation of Hessian necessary
Numerically expensive and potentially unstable

Gauss-Newton method
Hessian approximated through first derivatives
Convergence issues

Quasi-Newton
Approximate Hessian (or its inverse) using iterative scheme
Numerically stable and inexpensive
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PZ representation

Postitions of poles and zeros
Number of complex and real poles/zeros needs
Multiplicity

Quadratic factors
Multiplicity

Polynomial coefficients
Only number of poles and zeros
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Recursive estimation

Substitute non-linear problem with a linear one
Steiglitz-McBride (1965, 1977)

θi = argminθ′
K−1∑
k=0

∣∣∣∣ŷ (ωk)
A(eiωk ,θ′)

A(eiωk ,θi−1)
− B(eiωk ,θ′)

A(eiωk ,θi−1)

∣∣∣∣2
= argminθ′

K−1∑
k=0

∣∣∣∣ŷ (ωk)−
B(eiωk ,θ′)
A(eiωk ,θ′)

∣∣∣∣2 ∣∣∣∣ A(eiωk ,θ′)
A(eiωk ,θi−1)

∣∣∣∣2
More general: Weighted linear least squares (WLLS)

θi = argminθ′
K−1∑
k=0

W (ωk, θi−1)
∣∣ŷ (ωk) A

(
eiωk , θ′

)
− B

(
eiωk , θ′

)∣∣2
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Marelli and Balazs 2010

Logarithmic amplitude spectrum
Estimation of polynomial coefficients
Quasi-Newton with line search

Gradient calculated analytically
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
Iterative approximation of the inverse Hessian (rank-one
updates)
Line search along gradient

Initialized using the WLLS method
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Marelli and Balazs 2010

New method shows lowest error
Fewer iterations for polynomial representation
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Summary Pole-zero

Efficient representation for laterals, nasals, ...
Different estimation schemes
Newton-like method gives good results
Speaker verification improved as compared to LPC only
(Enzinger et al. 2011)
Important questions

What is an appropriate degree for the polynomials?
Should the glottal source be corrected?
What about physiological constraints?

Kasess (ARI) Vocal tract modeling SPL 2012 16 / 31



Segmented tube model

Vocaltract as a segmented tube (Wakita 1973, Fant 1960)

Glottis Lips

A0A1AN+1 AN

x

Two equations per segment m (volume velocity)

pm(x) = ρc
Am

(u+m exp(−ikx) + u−m exp(ikx))

um(x) = u+m exp(−ikx)− u−m exp(ikx)
(3)

Volume velocity and pressure are matched at boundaries
Lossless model (no friction or viscosity, below 4000 Hz ...)
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One-tube Model

Transfer function ulips/uglottis = u0/uN

Â(µ, z) = zN/2(1 0)

0∏
m=N

1
1− µm

(
1 µm

µmz−1 z−1

)(
1
0

)
(4)

Correspondence requires fixed segment length (related to
fs)
specific boundary conditions required (e.g. N=2)

Â(µ, z) ∝ 1 + (µ0µ1 + µ1µ2)z−1 + µ0µ2z−2

For µ0 or µN = ±1 reflection coefficients are calculated by
recursive algorithm (Markel and Gray, 1976)

m-th reflection coefficient µm := Am−Am+1
Am+Am+1

and z := exp i2π f
fs

= exp i2πf c
2l
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Branching Tubes

glottis

pharynx

velum

nasal cavity

oral cavity

Nasal tract is added
Each tract is modeled as segmented tube
For nasals: nasal tract open, oral tract closed
Vocaltract model has pole-zero characteristic

Transfer function given as f (µ, z) = B̂(µ,z)
Â(µ,z)
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Pole-zero Model

No direct way from pole-zero to branched-tube model
Numerator polynomial appears also in denominator

Pole-zero model has 2N + M + L coefficients
Two-tube model has N + M + L + 1 parameters
Numerator can be calculated precisely

Current estimation methods
Estimate pole-zero model
Apply step-down to numerator and
Minimize error with respect to either

denomiator polynomial (Lim and Lee 1996) or
signal filtered with numerator(Schnell 2003)

Gives precedence to zeros
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New Ansatz

Estimate all parameters at once
Use a Bayesian approach to model inversion
Include prior assumptions about vocal tract smoothness

Reflection coefficients close to zero imply a smooth tract
Sigmoidal parameter transform µm → θm

Restricts reflection coefficients to (−1, 1)

Estimation is based on the log smoothed spectral envelope

y (ω) := ln G (ω) = f (θ, ω) + ε (ω) . (5)

G...envelope, f ...transfer function B/A, ε...error, θ...transformed µ
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New Ansatz

y (ω) := ln G (ω) = f (θ, ω) + ε (ω)

Law of Bayes

p (θ, λ|y) ∝ p (y|θ, λ) p (θ) p (λ) = p (y, θ, λ) (6)

Under normality assumptions

p (y|θ, λ) = N (y|f (θ) ,Σ)

p(θ) = N
(
θ|ηθ,Π−1

θ

)
p(λ) = N

(
λ|ηλ,Π−1

λ

)
.

(7)

Covariance of error ε is defined as

Σ−1 = g(λ) = In expλ (8)
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Variational Bayes

Under a variational approach

p (θ, λ|y) = q(θ, λ) = q(θ)q(λ) (9)

with
q(θ) = N (θ|µθ,Σθ)
q(λ) = N (λ|µλ,Σλ) .

(10)

Iterate λ and θ alternatively
Use unscented transform for calculating the integrals
Posterior distribution based on Laplace approximation

Find maximum of q(θ) (q(λ)) using non-linear optimization
Variance follows from 2nd order derivative (approximated
by Jacobian)
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Model comparison
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Effect of priors I

●
●

●

●

●
●

●

●

●

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

R
ef

le
ct

io
n 

C
oe

ff.

µ1 µ2 µ3 µ4 µ5 µ6 µ1 µ2 µ3 µ4 µ5 µ6 µ1 µ2 µ3 µ4 µ5 µ6

σ2=0.02 σ2=0.1 GN

●●●
●

●●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●●

●
●

●●●●●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●●●●

●●●●
●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 1000 2000 3000 4000

−
40

−
30

−
20

−
10

4;6;5;60152

Frequency [Hz]

Le
ve

l [
dB

]

● Envelope
σ2=0.02
σ2=0.1
GN

● ●●●●

● ●●●●

● ●●●●

Less variance for Bayesian scheme
Effect of tighter priors

Spectral features are not always captured as well
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Effect of priors II
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Sometimes the effect of priors is neglgible
Using the Bayesian scheme may result in fitting different
zeros

Kasess (ARI) Vocal tract modeling SPL 2012 26 / 31



Area functions
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Smallest variance in nasal tube
Differences between /n/ and /m/ in all three branches

Differences not what is to be expected
Model too simple to capture the nasals properly
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Summary

The new method
uses simultaneous estimation of naso-pharyngal and oral
section
applies smoothness priors within a variational Bayesian
approach
does not build on a separate pole-zero estimation

Results show:
Application to recorded speech data yields in general good
spectral fits
Tradeoff between prior variance and accuracy
The Bayesian method is more robust against varying initial
conditions than a standard optimizer
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Discussion

Pole-zero models are more efficient for certain types of
phonemes
Non-linear optimization gives best results
Applications in coding and speaker identification

Physiological models
Physiological models constrain the solution
Number of parameters is given naturally
Other asumptions necessary e.g. terminations ...
A glottal model is needed
Different models for e.g. lateral or nasal
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Outlook

Tracking algorithm
Glottal excitation model
Using anatomically motivated priors

important if a more complex nasal tract model is included
Implementing Webster-Horn equation

uses conical instead of cylindrical elements

Impedance models for glottis and lips (nostrils)
Lossy model for friction and heat conduction

exponential decaying term
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