

Modeling speech using pole-zero models

Christian H. Kasess

Acoustics Research Institute

25.10.2012

Kasess (ARI)

Vocal tract modeling

SPL 2012 1 / 31

The vocal tract

The vocal tract and related supralaryngeal structures

http://pegasus.cc.ucf.edu/ cnye/vocal tract pic.htm

• Roughly divided into three cavities

- Pharyngeal
- Oral
- Nasal
- Oral vowel production
 - Nasal section closed off by velum
- Nasals and nasalized vowels
 - Nasal section coupled
- Laterals (e.g. /l/)
 - Airflow on one (or both) sides of the tongue

4 A N

Generates side branches

Source-filter model

The engineering model for speech synthesis.

http://health.tau.ac.il/Communication Disorders/noam

- Glottis acts as source (pulse train)
- Vocal tract acts as 'slowly' varying linear filter

- Source and filter often assumed independent
 - Glottal opening and closing changes VT filter
- Glottal pulse is not ideal pulse
- Effect of glottis not linear
- Still the source-filter model is useful
 - Commonly used in phonetics
 - Model parameters can be used for speaker recognition
 - Useful for formant tracking

- All-pole model captures resonances or formants
- Autoregressive model (AR), linear predictive coding (LPC)

$$y(n) = \sum_{i=1}^{p} a_i y(n-i) + x(n)$$

- Works well with vowels
- Easy to estimate
 - Solve the Yule-Walker equations (Toeplitz) with the Levinson-Durbin algorithm

$$\gamma(n) = \sum_{i=1}^{p} a_i \gamma(n-i) + \sigma_x^2 \delta_{n,0}$$

• Direct link to simple physical model

Correlation function... $\gamma(i) = E[y(n)y(n-i)]$

Kasess (ARI)

Nasal spectra show spectral dips

- Oral cavities and paranasal cavities act as resonators
- Side branches cause decrease in energy
- Pole-zero model more efficient
- Problems with pole-zero models
 - Trickier to estimate
 - Requires in general non-linear methods
 - Correspondence to physical model more difficult

All-pole vs. pole-zero model ctd.

Kasess (ARI)

SPL 2012 7 / 31

• Auto Regressive Moving Average (ARMA)

$$y(n) - \sum_{k=1}^{p} a_k y(n-k) = \sum_{j=0}^{q} b_j x(n-j)$$
(1)

Pole-zero model

$$\hat{y}(\omega) = \frac{\sum_{j=0}^{q} b_j e^{-i\omega k}}{\sum_{k=0}^{p} a_k e^{-i\omega k}} \hat{x}(\omega) = \frac{B\left(e^{-i\omega}, \theta\right)}{A\left(e^{-i\omega}, \theta\right)} \hat{x}(\omega)$$
(2)

Estimation in general a non-linear problem

Time domain

• Not suitable for perceputal frequency scales

Spectral domain

- Perceputal frequency scales can be included
- Logarithmic spectrum can be used
- Spectral envelope needs to be extracted
 - Harmonics for voiced segments due to glottis
 - Envelope represents VT transfer function (+ glottal pulse)

- Linear spectrum
 - Assumptions about phase are necessary (minimum phase)
 - Speech signal is not minimum phase (glottis)
- Log spectrum

$$\theta = \operatorname{argmin}_{\theta'} \sum_{k=0}^{K-1} \left| \log \hat{y}(\omega_k) - \log \frac{B\left(e^{i\omega_k}, \theta'\right)}{A\left(e^{i\omega_k}, \theta'\right)} \right|^2$$

Perceptually relevantLog amplitude spectrum

$$\theta = \operatorname{argmin}_{\theta'} \sum_{k=0}^{K-1} \left| \log |\hat{y}(\omega_k)| - \log \left| \frac{B\left(e^{i\omega_k}, \theta'\right)}{A\left(e^{i\omega_k}, \theta'\right)} \right| \right|^2$$

- Phase ignored, minimum phase system easy to obtain
- Cepstral domain
 - Computationally efficient (only for linear frequency)

- Estimate numerator and denominator separately
- Recursive Methods
 - Do not necessarily converge to local minimum
- Non-linear optimization
 - Newton method
 - Calculation of Hessian necessary
 - Numerically expensive and potentially unstable
 - Gauss-Newton method
 - Hessian approximated through first derivatives
 - Convergence issues
 - Quasi-Newton
 - Approximate Hessian (or its inverse) using iterative scheme
 - Numerically stable and inexpensive

Postitions of poles and zeros

- Number of complex and real poles/zeros needs
- Multiplicity
- Quadratic factors
 - Multiplicity
- Polynomial coefficients
 - Only number of poles and zeros

- Substitute non-linear problem with a linear one
- Steiglitz-McBride (1965, 1977)

$$\begin{aligned} \theta_{i} &= \operatorname{argmin}_{\theta'} \sum_{k=0}^{K-1} \left| \hat{y}\left(\omega_{k}\right) \frac{A\left(e^{i\omega_{k}},\theta'\right)}{A\left(e^{i\omega_{k}},\theta_{i-1}\right)} - \frac{B\left(e^{i\omega_{k}},\theta'\right)}{A\left(e^{i\omega_{k}},\theta_{i-1}\right)} \right|^{2} \\ &= \operatorname{argmin}_{\theta'} \sum_{k=0}^{K-1} \left| \hat{y}\left(\omega_{k}\right) - \frac{B\left(e^{i\omega_{k}},\theta'\right)}{A\left(e^{i\omega_{k}},\theta'\right)} \right|^{2} \left| \frac{A\left(e^{i\omega_{k}},\theta'\right)}{A\left(e^{i\omega_{k}},\theta_{i-1}\right)} \right|^{2} \end{aligned}$$

More general: Weighted linear least squares (WLLS)

$$\theta_{i} = \operatorname{argmin}_{\theta'} \sum_{k=0}^{K-1} W(\omega_{k}, \theta_{i-1}) \left| \hat{y}(\omega_{k}) A(e^{i\omega_{k}}, \theta') - B(e^{i\omega_{k}}, \theta') \right|^{2}$$

- Logarithmic amplitude spectrum
- Estimation of polynomial coefficients
- Quasi-Newton with line search
 - Gradient calculated analytically
 - Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
 - Iterative approximation of the inverse Hessian (rank-one updates)
 - Line search along gradient
- Initialized using the WLLS method

Marelli and Balazs 2010

- New method shows lowest error
- Fewer iterations for polynomial representation

- Efficient representation for laterals, nasals, ...
- Different estimation schemes
- Newton-like method gives good results
- Speaker verification improved as compared to LPC only (Enzinger et al. 2011)
- Important questions
 - What is an appropriate degree for the polynomials?
 - Should the glottal source be corrected?
 - What about physiological constraints?

• Vocaltract as a segmented tube (Wakita 1973, Fant 1960)

• Two equations per segment *m* (volume velocity)

$$p_m(x) = \frac{\rho c}{A_m} \left(u_m^+ exp(-ikx) + u_m^- exp(ikx) \right)$$

$$u_m(x) = u_m^+ exp(-ikx) - u_m^- exp(ikx)$$
(3)

- Volume velocity and pressure are matched at boundaries
- Lossless model (no friction or viscosity, below 4000 Hz ...)

• Transfer function $u_{lips}/u_{glottis} = u_0/u_N$

$$\hat{A}(\mu, z) = z^{N/2} (1 \ 0) \prod_{m=N}^{0} \frac{1}{1 - \mu_m} \begin{pmatrix} 1 & \mu_m \\ \mu_m z^{-1} & z^{-1} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
(4)

- Correspondence requires fixed segment length (related to f_s)
- specific boundary conditions required (e.g. N=2)

$$\hat{A}(\mu, z) \propto 1 + (\mu_0 \mu_1 + \mu_1 \mu_2) z^{-1} + \mu_0 \mu_2 z^{-2}$$

• For μ_0 or $\mu_N = \pm 1$ reflection coefficients are calculated by recursive algorithm (Markel and Gray, 1976)

m-th reflection coefficient $\mu_m := \frac{A_m - A_{m+1}}{A_m + A_{m+1}}$ and $z := \exp i2\pi \frac{f}{f_s} = \exp i2\pi f \frac{c}{2l}$

Kasess (ARI)

- Nasal tract is added
- Each tract is modeled as segmented tube
- For nasals: nasal tract open, oral tract closed
- Vocaltract model has pole-zero characteristic
 - Transfer function given as $f(\mu, z) = \frac{\hat{B}(\mu, z)}{\hat{A}(\mu, z)}$

- No direct way from pole-zero to branched-tube model
- Numerator polynomial appears also in denominator
 - Pole-zero model has 2N + M + L coefficients
 - Two-tube model has N + M + L + 1 parameters
 - Numerator can be calculated precisely
- Current estimation methods
 - Estimate pole-zero model
 - Apply step-down to numerator and
 - Minimize error with respect to either
 - denomiator polynomial (Lim and Lee 1996) or
 - signal filtered with numerator(Schnell 2003)
 - Gives precedence to zeros

- Estimate all parameters at once
- Use a Bayesian approach to model inversion
- Include prior assumptions about vocal tract smoothness
 - Reflection coefficients close to zero imply a smooth tract
- Sigmoidal parameter transform $\mu_m \rightarrow \theta_m$
 - Restricts reflection coefficients to (-1, 1)
- Estimation is based on the log smoothed spectral envelope

$$y(\omega) := \ln G(\omega) = f(\theta, \omega) + \epsilon(\omega).$$
(5)

G...envelope, *f*...transfer function *B*/*A*, ϵ ...error, θ ...transformed μ

$$\mathbf{y}\left(\omega\right) := \ln G\left(\omega\right) = f\left(\theta, \omega\right) + \epsilon\left(\omega\right)$$

Law of Bayes

$$p(\theta, \lambda | y) \propto p(y | \theta, \lambda) p(\theta) p(\lambda) = p(y, \theta, \lambda)$$
(6)

Under normality assumptions

$$p(y|\theta,\lambda) = \mathcal{N}(y|f(\theta),\Sigma)$$

$$p(\theta) = \mathcal{N}(\theta|\eta_{\theta},\Pi_{\theta}^{-1})$$

$$p(\lambda) = \mathcal{N}(\lambda|\eta_{\lambda},\Pi_{\lambda}^{-1}).$$
(7)

Covariance of error ϵ is defined as

$$\Sigma^{-1} = g(\lambda) = I_n \exp \lambda \tag{8}$$

Under a variational approach

$$p(\theta, \lambda | y) = q(\theta, \lambda) = q(\theta)q(\lambda)$$
(9)

with

$$q(\theta) = \mathcal{N}(\theta|\mu_{\theta}, \Sigma_{\theta}) q(\lambda) = \mathcal{N}(\lambda|\mu_{\lambda}, \Sigma_{\lambda}).$$
(10)

- Iterate λ and θ alternatively
- Use unscented transform for calculating the integrals
- Posterior distribution based on Laplace approximation
 - Find maximum of $q(\theta)$ ($q(\lambda)$) using non-linear optimization
 - Variance follows from 2nd order derivative (approximated by Jacobian)

Model comparison

- RMS levels off for higher prior variances
- Simple optimization comparable to Bayesian estimation

Kasess (ARI)

Effect of priors I

- Less variance for Bayesian scheme
- Effect of tighter priors
 - Spectral features are not always captured as well

Effect of priors II

< A

- Sometimes the effect of priors is neglgible
- Using the Bayesian scheme may result in fitting different zeros

- Smallest variance in nasal tube
- Differences between /n/ and /m/ in all three branches
 - Differences not what is to be expected
 - Model too simple to capture the nasals properly

The new method

- uses simultaneous estimation of naso-pharyngal and oral section
- applies smoothness priors within a variational Bayesian approach
- does not build on a separate pole-zero estimation

Results show:

- Application to recorded speech data yields in general good spectral fits
- Tradeoff between prior variance and accuracy
- The Bayesian method is more robust against varying initial conditions than a standard optimizer

- Pole-zero models are more efficient for certain types of phonemes
- Non-linear optimization gives best results
- Applications in coding and speaker identification
- Physiological models
 - Physiological models constrain the solution
 - Number of parameters is given naturally
 - Other asumptions necessary e.g. terminations ...
 - A glottal model is needed
 - Different models for e.g. lateral or nasal

- Tracking algorithm
- Glottal excitation model
- Using anatomically motivated priors
 - important if a more complex nasal tract model is included
- Implementing Webster-Horn equation
 - uses conical instead of cylindrical elements
- Impedance models for glottis and lips (nostrils)
- Lossy model for friction and heat conduction
 - exponential decaying term

- G. Fant. Acoustic theory of speech production, with calculation based on X-ray studies of Russian articulations. Mouton De Gruyter, 1960.
- J. Flanagan. Speech analysis, synthesis, and perception. Springer, Berlin, 1972.
- K. Friston and J. Mattout and N. Trujillo-Barreto and J. Ashburner and W. Penny. Variational free energy and the Laplace approximation. Neuroimage, 34, 220–234, 2006.
- I.-T. Lim and B.G. Lee. Lossy Pole-Zero Modeling for Speech Signals. IEEE Trans. Speech Audio Processing, 4(2), 1996.
- D. Marelli and P. Balazs. On Pole-Zero Model Estimation Methods Minimizing a Logarithmic Criterion for Speech Analysis. IEEE, IEEE Trans. Audio Speech Lang. Process., 18(2):237–248, 2010.
- J.D. Markel and A.H. Gray, Jr.. Linear Prediction of Speech. Springer, Berlin, 1976.
- K. Schnell. Rohrmodelle des Sprechtraktes. Analyse, Parameterschätzung und Syntheseexperimente. PhD thesis, Universität Frankfurt, 2000.
- H. Wakita. Direct estimation of the vocal tract shape by inverse filtering of acoustic speech waveforms. IEEE Trans. on Aud. and Electroacoustics, AU-21(5):417–427, 1972.
- E. Enzinger, P. Balazs, D. Marelli and T. Becker. A Logarithmic Based Pole-Zero Vocal Tract Model Estimation for Speaker Verification, ICASSP 2011
- Steiglitz, K., and L.E. McBride. A Technique for the Identification of Linear Systems, IEEE Trans. Automatic Control, Vol. AC-10, pp.461-464, 1965.