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Time-Frequency Analysis and

Filterbanks
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Short Time Fourier Transformation (STFT)

Definition (see e.g [Gröchenig, 2001])

Let f ,g 6= 0 in L2
(
Rd
)
, then we call

Vgf(τ, ω) =

∫
Rd

f(x)g(x− τ)e−2πiωxdx .

the Short Time Fourier Transformation (STFT) of the signal f with
the window g.

Vg(f)(τ, ω) = F
(
f · Tτg

)
.

Sampled Version: Gabor transform : τ = a · k, ω = b · l with k, l ∈ Z.

f 7→ Vg(f)(a · k, b · l).

When is perfect reconstruction possible?
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Filterbank

When is perfect reconstruction possible?
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Orthonormal Basis (ONB)

Standard aproach: orthonormal basis.

Problems:

Perturbation

Construction

Error Robustness
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Riesz bases

Riesz bases

Problems:

Perturbation

Construction

Error Robustness
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Frames

Alternate approach: introduce redundancy.

Problems:

Perturbation

Construction

Error Robustness
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Frames

Definition

The (countable) sequence Ψ = (ψk|k ∈ K) is called a frame
for the Hilbert space H if constants A > 0 and B <∞ exist
such that

A · ‖f‖2H ≤
∑
k

|〈f, ψk〉|2 ≤ B · ‖f‖2H ∀ f ∈ H.

[Duffin and Schaeffer, 1952, Daubechies et al., 1986]
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Frames

Beautiful abstract mathematical setting:

Frames = generalization of bases; can be overcomplete,
allowing redundant representations.

Frame inequality = generalization of Parseval’s condition.

Active field of research in mathematics!

Interesting for applications:

Much more freedom. Finding and constructing frames
can be easier and faster.
Some advantageous side constraints can only be fulfilled
for frames.

Perfect reconstruction is guaranteed with the ‘canonical
dual frame’ ψ̃k = S−1ψk

f =
∑
k

< f,ψk > ψ̃k =
∑
k

< f, ψ̃k > ψk.
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transform
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Non-stationary Gabor transform

Limitations of Standard Gabor analysis: Quality of
representation highly depends on window choice, but optimal
window choice is different for different signal components
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Our proposition [Balazs et al., 2011]: simple extension to
reduce this limitation by using window evolving over time.
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Non-stationary Gabor transform

Given a sequence of windows (γn)n∈Z of L2 (R) and sequences
of real numbers (an)n∈Z and (bn)n∈Z, the non-stationary Gabor
transform (NSGT) elements are defined, for (m,n) ∈ Z2, by:

γm,n(t) = γn(t− nan)ei2πmbnt = MmbnTnanγn.

Regular structure in frequency allows FFT implementation.

A analogue construction in the frequency domain allows easy
implementation of, e.g. wavelet frames; an invertible CQT
[Velasco et al., 2011]; or a filterbank adapted to human
auditory perception (see talk by Thibaud Necciari).
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Non-stationary Gabor transform

Sampling grid example:
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Non-stationary Gabor transform

Frame theory allows perfect reconstruction. Especially easy and
fast in the ’painless’ case:

Theorem

For every n ∈ Z, let the function γn ∈ L2(R) be compactly
supported with supp(γn) ⊆ [cn + nan, dn + nan] such that
dn − cn ≤ 1

bn
. the system of functions gm,n forms a frame for

L2 (R) if and only if there exists A > 0 and B <∞, such that
A ≤

∑
n

1
bn
|γn(t− nan)|2 ≤ B. In this case, the canonical dual

frame has the same structure and is given by:

γ̃m,n(t) =
γn(t)∑

k
1
bk
|γk(t− kak)|2

e2πimbnt. (1)
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Non-stationary Gabor transform

Bird vocalization example:
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Multipliers

Those are operators, that are of utmost importance in

Mathematics, where they are used for the diagonalization
of operators [Schatten, 1960].

Physics, where they are a link between classical and
quantum mechanics, so called quantization operators
[Ali et al., 2000].

Signal Processing, where they are a particular way to
implement time-variant filters
[Matz and Hlawatsch, 2002].

Acoustics, where those time-frequency filters are used in
several fields, for example in Computational Auditory
Scene Analysis [Wang and Brown, 2006].
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Example for a Multiplier

Original audio file:
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Example for a Multiplier

Symbol:
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Example for a Multiplier

Result of Gabor Multiplier.

Peter Balazs Frames in Acoustics page 22


result_jump1.wav
Media File (audio/wav)



Frames in
Acoustics

Peter Balazs

Frame Theory

Multipliers

Applications

Conclusions

Frame Multipliers: Definition

Definition

Let (ψk)k∈K , (φk)k∈K be frames in the Hilbert spaces H1 and
H2. Define the operator Mm,(φk),(ψk) : H1 → H2, the frame
multiplier, as the operator

Mm,(φk),(ψk)f =
∑
k

mk 〈f, ψk〉φk

where m ∈ l∞(K) is called the symbol.

Generalization of Gabor multipliers
[Feichtinger and Nowak, 2003] to the general frame case
[Balazs, 2007].
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Fundamental Research in the Theory of Multipliers

Theorem ([Balazs, 2007])

Let M = Mm,(φk),(ψk) be a frame multiplier for (ψk) and (φk)
with the upper frame bounds B and B′ respectively. Then

1 If m ∈ l∞, then M is a well defined bounded operator.
‖M‖Op ≤

√
B′
√
B · ‖m‖∞.

2 M∗m,(φk),(ψk)
= Mm,(ψk),(φk). Therefore if m is real-valued

and φk = ψk for all k, M is self-adjoint.

3 If m ∈ c0, M is compact.
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Unconditionally Convergence and Invertibility of
Frame Multipliers

We also found sufficient conditions, when multipliers are invertible.
In this case, formulas for M−1

(mn),(φn),(ψn) are determined. For

example in the following case:

Proposition ([Stoeva and Balazs, 2012])

Let Φ = (φk) be a frame for H. Assume that ∃µ ∈ [0,
A2

Φ

BΦ
) such that∑

| 〈f,mnψn − φn〉 |2 ≤ µ‖f‖2, ∀ f ∈ H. Then mΨ is a frame for
H, the multipliers Mm,Φ,Ψ and Mm,Ψ,Φ are invertible on H and

1

BΦ +
√
µBΦ

‖h‖ ≤ ‖M−1h‖ ≤ 1

AΦ −
√
µBΦ

‖h‖, ∀h ∈ H, (2)

M−1 =

∞∑
k=0

[S−1
Φ (SΦ −M)]kS−1

Φ (3)

where M denotes any one of Mm,Φ,Ψ and Mm,Ψ,Φ.

Peter Balazs Frames in Acoustics page 25



Frames in
Acoustics

Peter Balazs

Frame Theory

Multipliers

Applications

Conclusions

Numerical results and algorithms

Implementation in STx and MATLAB, in the Linear
Time-Frequency Analysis Toolbox (LTFAT)
[Soendergaard et al., 2012] (available at Sourceforge, see talk
by Peter Søndergaard.) .

Peter Balazs Frames in Acoustics page 26



Frames in
Acoustics

Peter Balazs

Frame Theory

Multipliers

Applications

Irrelevance

Acoustic System
Estimation

Conclusions

Applications in Acoustics:
Perceptual Sparsity by

Irrelevance
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MP3-Player

MP3:

encoding / decoding scheme

MPEG1/MPEG2 (Layer 3)

signal processing

psychoacoustical masking model
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Psychoacoustic Masking: introduction

Masking:
presence of one stimulus, the masker, decreases the response to
another stimulus, the target.

Irrelevance Filter: searches (and deletes) perceptional irrelevant
data (in complex signals) using a masking model.
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Perceptual Sparsity by Irrelevance

Algorithm in :
Original audio file

”Lossy Coding”
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Psychoacoustic Masking

Algorithm in :
Filtered signal

”Lossy Coding”
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Perceptual Sparsity by Irrelevance

Interpreted as adaptive Gabor frame multiplier:

Extension to True Time-Frequency Model using NSGT
Multipliers (see Talk Thibaud Necciari)
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Applications in Acoustics:

Acoustic System
Estimation
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Acoustic System Estimation

Measurement of Head Related Transfer Functions (HRTFs)
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Acoustic System Estimation

Electro-acoustic signal path:
weakly non-linear, time invariant systems (PA, Speakers)

with head-movement weakly non-linear, time variant system
But the interesting part is the HRTF: an LTI system!
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Acoustic System Estimation

Input Output

Deconvolution
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Acoustic System Estimation

Measurement of Head Related Transfer Functions (HRTFs) by
the Multiple Exponential Sweeps Method (MESM)
[Majdak et al., 2007]

Speed up measurement by factor of four.
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Acoustic System Estimation

Time-Frequency Denoising [Majdak et al., 2011]:
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Conclusions

Frames and Frame Multipliers allow

interesting mathematical results, as well as

provide new methods and models for
acoustics, as well as their implementation.

From Theory to Applications!
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Thank you for your attention!

Questions? Comments?
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