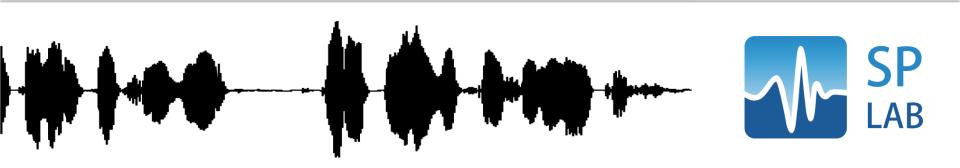
J. Mekyska¹, Z. Smekal¹, M. Kostalova^{3, 4}, M. Mrackova^{2, 3}, S. Skutilova⁴, I. Rektorova^{2,3}

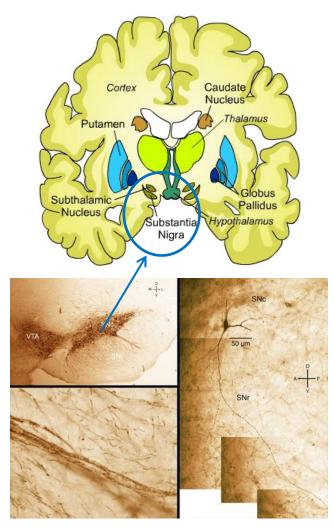

¹Signal Processing Laboratory, Department of Telecommunications, Faculty of Electrical Engineering and Communication, Brno University of Technology, Czech Republic

²First Department of Neurology, Masaryk University and St Anne's Hospital, Czech Republic

³CEITEC, Masaryk University, Czech Republic

⁴Department of Neurology, Masaryk University and University Hospital Brno, Czech Republic

Hypokinetic Dysarthria in Parkinsonian Speech: From Theory to Feature Selection


Outline

1. Parkinson disease

- 2. Analysis of Parkinsonian speech
- 3. Czech Parkinsonian speech corpus
- 4. Selection of optimal features for Parkinsonian speech analysis
- 5. Future work

Parkinson disease

- James Parkinson: An Essay on the Shaking Palsy (1817)
- Neurodegenerative brain disease
- Progressive death of dopaminergic neurons in the area of substancia nigra pars compacta and in the other areas of brain

Parkinson disease

Symptoms

- Rigidity inability to initiate movement due to difficulty selecting and/or activating motor programs in the central nervous system
- Akinesia loss of the ability to create muscular movement
- Bradykinesia slowness of movement
- Tremor
- Hypokinetic dysarthria reflected in speech
- Progression is not linear (quick start)

Outline

- 1. Parkinson disease
- 2. Analysis of Parkinsonian speech
- 3. Czech Parkinsonian speech corpus
- 4. Selection of optimal features for Parkinsonian speech analysis
- 5. Future work

Hypokinetic Dysarthria (HD)

- Speech disorder
- Nearly 70 % of Parkinsonians have HD
- Reflected in many areas
 - Phonation
 - Articulation
 - Prosody
 - Fluency
 - Faciokinesis

Hypokinetic dysarthria – example

- What should we concentrate on:
 - No facial expressions
 - No emotions
 - Late responses
 - Slow movement of articulatory organs
 - Silent voice
 - Long pauses in the speech

03/11/2011

Hypokinetic dysarthria – phonation

- Increased mean(F₀)
- Speech tremor increased jitter
 - Inability to maintain laryngeal muscles in a stable position for a longer period of time
 - Prolonged vowels
- Hypophonia low speech intensity
- Dysphonia hoarse or weak, excessively breathy, harsh or rough speech

Hypokinetic dysarthria – phonation

Small value of shimmer

- Inability to effectively work with a breath
 - Insertion of undesirable pauses
 - Uttering a small number of syllables in one breath
- Sudden increase or decrease of speech rate
- Repetition of initial syllables
- Hypernasality highlight of some formants
 - A sudden release of air flow through the nasal cavity

Hypokinetic dysarthria – articulation

- Bad quality of consonants [p], [t], [k], [b], [d], [g]
 - Improper working of articulatory organs
 - Lips, tongue tip, the centre of the tongue, tongue base, epiglottis and larynx
- DDK (Diadochokinetic Tasks)
 - Sequences with plosive-vocal combination
 - Pa ta ka pa ta ka pa ta ka ...
 - DDK used to judge the precision of articulation

Hypokinetic dysarthria – prosody, fluency

Prosody

- Unable to express emotions (anger)
- Disprosody

Speech fluency

- Hesitation unintentionally breaks
- Palilalia hurriedly repeated words or single syllables
- Bradyphemia suddenly decelerated speech
- Tachyphemia suddenly accelerated speech

Features used for the description of Parkinsonian speech

- Not clear, which speech features are useful
- No statistically significant tests small databases (10 speakers)
- Fundamental frequency F₀
 - Increased mean(F₀)
 - Increased jitter and std(F₀) in short signals
 - Decreased jitter and std(F₀) in long signals monotonous speech from the global view

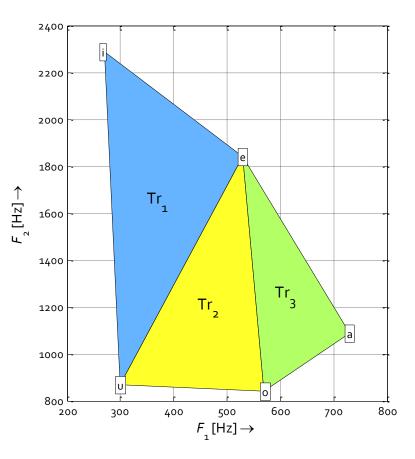
Features derived from F₀ and speech intensity

Variation and normalization of F₀

$$F_{o}VR = F_{o_{max}} - F_{o_{min}}$$
$$relF_{o}SD = \frac{std(F_{o})}{mean(F_{o})}$$
$$relF_{o}VR = \frac{F_{o}VR}{mean(F_{o})}$$

- Speech Intensity
 - Decreased intensity low Short-time energy and Teager-Kaiser energy operator
 - Small variation low shimmer
 - Necessary to do the microphone calibration (1 Pa, 1 kHz)

Speech tempo


- Not clear if should be increased or decreased
- Some features derived from the speech tempo
 - Total Speech Time (TST)
 - Total Pause Time (TPT) pauses longer than 10 ms
 - Net Speech Time (NST) speech without pauses
 - Total Intra-word Pause Time total length of pauses inside the multi-sillable words
 - Total Speech Rate (TSR) number of syllables per second
 - Net Speech Rate (NSR) total number of syllables/NST
 - Articulation Rate (AR) similar to NSR, but the pauses are longer than 50 ms

Pausing

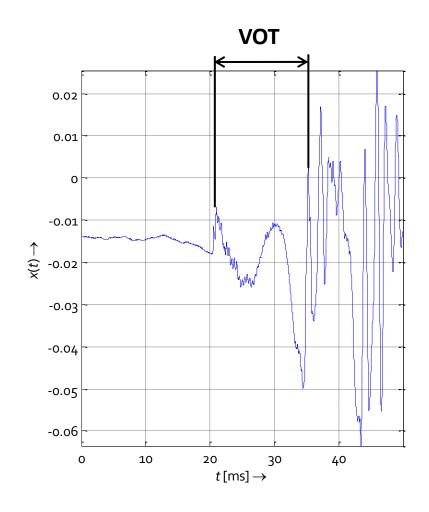
- Unintentionally breaks
- Prolonged pauses
- Some features derived from pausing
 - Percentual Pause Ratio (PPR) (Total Pause Time)/(Total Speech Time)
 - Ratio of Itra-word Pauses (RIWP) (Total Intra-word Pause Time)/(Total Pause Time)
 - Interpause Speech Duration (ISD) time between two pauses
 - Speech Index of Rhytmicity (SPIR) number of inter-word pauses per second

Formants and Vowel Space Area (VSA)

- Can be used to monitor the tongue movement
- Dependent on age and gender
- Normalization F_{2i}/F_{2u}
- Vowel Space Area (VSA)
 - Decreased value in case of HD
 - Monitoring the borders of tongue movement
 - Usually used InVSA

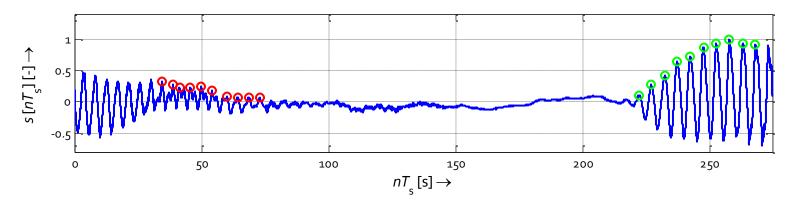
Formant Centralization Ratio (FCR)

- VSA is dependent on age and gender
- Necessary to introduce a normalization


$$FCR = \frac{F_{2U} + F_{2a} + F_{1i} + F_{1U}}{F_{2i} + F_{1a}}$$

Vowel Articulation Index (VAI)

$$VAI = \frac{1}{FCR}$$


03/11/2011

Voice Onset Time (VOT)

- Interval between the initial articulatory release of a stop consonant and the onset of voicing for the subsequent vowel
- Value dependent on the type of consonant
 - Short in case of bilabial consonants ([b], [p])
 - Medium in case of alveolar consonants ([d], [t])
 - Long in case of velar consonants ([g], [k])

Phonatory Offset and Phonatory Onset (POPO)

- Parkinsonians are not able to quickly end the phonation
- Phonatory offset last 10 pulses
- Phonatory onset first 10 pulses
- Using the semitones, there are monitored the changes of F₀ in phonatory offset/onset

Features used for the description of Parkinsonian speech

- Mentioned only speech features that can be useful according to the literature
- Many other features
 - Cepstral Peak Prominence
 - segmental features MFCC, PLP, ACW...
 - features based on attractors
- It is necessary to find optimal features that can distinguish between Parkinsonians and control speakers
- Necessary to build robust speech corpus

Outline

- 1. Parkinson disease
- 2. Analysis of Parkinsonian speech
- 3. Czech Parkinsonian speech corpus
- 4. Selection of optimal features for Parkinsonian speech analysis
- 5. Future work

Czech Parkinsonian speech corpus

- In cooperation with St Anne's Hospital, Czech Republic
- Proposed data set
 - Parkinsonians: 100 (50 males, 50 females)
 - Control speakers: 100 (50 males, 50 females)
- To our best known, it will be the biggest and most complex database
- In some cases synchronization with fMRI
- Data acquisition
 - Speech, face, fMRI, hand writing (EUPMT)

03/11/2011

Jiri Mekyska | SPLab, DT, FEEC, BUT | j.mekyska@phd.feec.vutbr.cz

Czech Parkinsonian speech corpus

- $f_{\rm s} = 48 \, \rm kHz$
- Spatial resolution: 768 x
 576 px

Procedure

- Firstly the presence of Parkinson disease is tested
- In case of Parkinsonians, the degree of disease is checked
- The participants are doing many tasks according to the protocol

The protocol

- Protocol contain 14 main tasks, in some cases with subtasks
- Spontaneous speech without any control
 - What are your hobbies?
 - Useful for the detection of speech rate and prosodic characteristics

Reading the text

- Reading the same text at the beginning and at end of the protocol
- Reading the poem detection of rhythm
- 1 sentence uttered in 3 different ways monitoring the intonation
- 1 sentence with 3 different stresses
- Repetition according to the doctor
 - Sentences complicated for an articulation
 - Words complicated for an articulation
 - Words with combination plosive-vocal at the beginning (VOT)
 - Short and prolonged vocals [a], [e], [i], [o], [u]
 - Silent and loud prolonged vocals [a], [e], [i], [o], [u]

The protocol

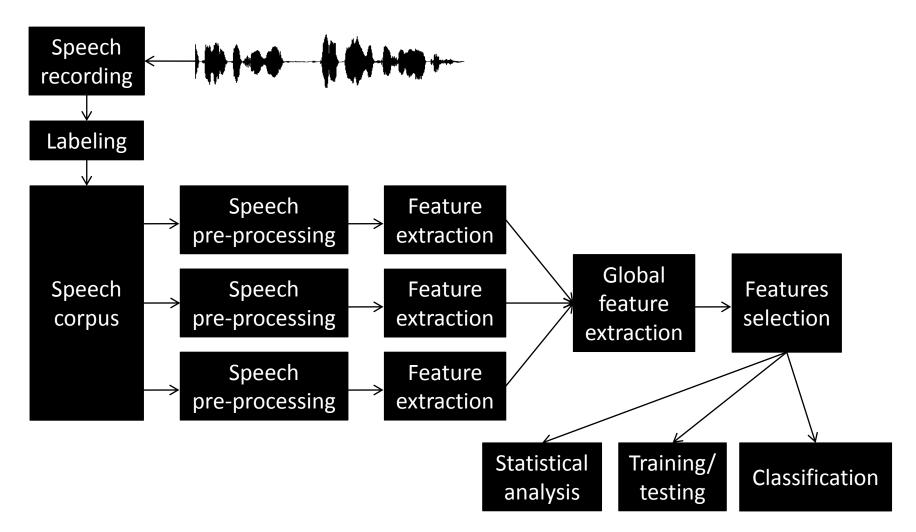
Diadochokinetic Tasks

- Ba ba ba ba ba ba ba
- Ptkptkptkptkptk
- Pa ta ka pa ta ka pa ta ka pa ta ka

Maximum time of phonation

- Prolonged mmmmmmmmmmmmmmmm

- Prolonged combination of consonant and vocal Ryyyyyyy


Data post-processing

- Each speaker identification is coded depending on:
 - Presence of Parkinson disease
 - Gender
 - Order
- Data are manually labeled
 - start sample stop sample label of task
 - Corpus XML is generated
- According to the tasks, the documentation is automatically generated (list of all present tasks)

Outline

- 1. Parkinson disease
- 2. Analysis of Parkinsonian speech
- 3. Czech Parkinsonian speech corpus
- 4. Selection of optimal features for Parkinsonian speech analysis
- 5. Future work

Selection of optimal features for Parkinsonian speech analysis

03/11/2011

Jiri Mekyska | SPLab, DT, FEEC, BUT | j.mekyska@phd.feec.vutbr.cz

Selection of optimal features for Parkinsonian speech analysis

- Which features are suitable for diagnosis of Parkison disease?
- Input features:

mean, median, variance, standard deviation, maximum and minimum of F_0 , F_1 , F_2 , F_3 ; F_0 -VR, rel F_0 -SD, rel F_0 -VR, mean local jitter (jitter ML), absolute mean local jitter (jitter AML), mean rap jitter (jitter MR), mean ppq5 jitter (jitter MP), mean ddp jitter (jitter MD); mean, median, variance, standard deviation, maximum and minimum of bandwidth *B* of formants F_1 , F_2 , F_3 ; global features VSA (Vowel Space Area), InVSA (logaritmic VSA), VAI (Vowel Articulation Index), FCR (Formant Centralization Ratio), F_{2i}/F_{2u} , mean autocorrelation, mean noise-to-harmonic ratio (mean NHR), and mean harmonic-to-noise ratio (mean HNR)

Selection of optimal features for Parkinsonian speech analysis

Database

- 12 male speakers with hypokinetic dysarthria
- 42 male control speakers
- 2 sets of Czech vocals [a], [e], [i], [o], [u]
 - Natural voice intensity (sn)
 - Loud pronunciation (In)
- 510 features for each speaker
- Selection of 20 best features
 - minimum Redundancy Maximum Relevance (mRMR)
 - Inter-Intra Class Distance Ratio (IICDR)
- In case of normal distribution (Jarque-Bera test) ANOVA was applied

Results – IICDR, mRMR, ANOVA

	IICDR METHOD		MRMR METHOD	
Order	Label	Parameter	Label	Parameter
1	u_In	max F ₁	a_sn	mean F ₀
2	u_ In	HNR	e_sn	jitter MR
3	o_ In	jitter ML	u_ln	jitter MR
4	u_sn	std F ₁	a_ sn	jitter MP
5	u_sn	max F ₁	i_ sn	jitter MP
6	o_ In	HNR	u_sn	jitter MP
7	u_ In	std F ₁	e_In	jitter MR
8	a_ In	std F ₁	i_ ln	jitter MP
9	u_sn	var F ₁	o_ In	jitter MR
10	a_In	HNR	i_ ln	local jitter
11	a_sn	std F ₁	e_sn	jitter MD
12	o_ In	jitter ML	u_ In	jitter MD
13	o_sn	mean B- F_1	e_sn	jitter ML
14	u_In	jitter MR	a_sn	jitter ML
15	u_ In	jitter MD	o_sn	jitter ML
16	o_In	jitter MD	o_ sn	jitter MR
17	o_ In	jitter MR	o_sn	jitter MP
18	o_ In	jitter MP	u_ sn	jitter MR
19	i_ sn	jitter MR	a_ In	jitter MP
20	i_ sn	jitter MD	e_In	min F ₀

Analysis of variance (ANOVA) for parameters chosen by the ICCDR method

Label	Parameter	<i>p</i> -value
o_sn	mean B- F_1	0.0000
a_ln	mean HNR	0.0567
u_ln	jitter MD	0.4178
u_ln	jitter MR	0.4205
u_ln	mean HNR	0.5008
o_ln	mean HNR	0.9339

Analysis of variance (ANOVA) for parameters chosen by the mRMR method

Label	Parameter	<i>p</i> -value
e_ln	mean <i>F</i> ₀	0.0880
u_ln	jitter MR	0.5189
u_ln	jitter MD	0.5226

Selection of optimal features for Parkinsonian speech analysis – results

- Significant features
 - Features based on the jitter
 - Features based on the harmonicity reflecting the speech quality
 - Features based on F₁
- The database is still quite small
- The tests were made just for males

Outline

- 1. Parkinson disease
- 2. Analysis of Parkinsonian speech
- 3. Czech Parkinsonian speech corpus
- 4. Selection of optimal features for Parkinsonian speech analysis
- 5. Future work

Future work

- Acquire more speakers (proposed number: 200)
- Try the other features
 - Segmental features
 - Features based on attractors
 - Features describing the quality of speech
 - Features describing tempo and pausing
 - Features describing articulation
- Introduce new features
 - Feature universal for both genders
 - Involve the genetic programming

Future work

- Find better statistical analysis
- Monitor the progression of disease
- Synchronize the results obtained by the speech analysis with other results
 - fMRI
 - Face analysis
 - Hand writing analysis
- Prepare software suitable for the Parkinsonian speech analysis
 - Complex recording, labeling, statistical analysis, classification, monitoring the progression
 - User friendly GUI

Later questions: j.mekyska@phd.feec.vutbr.cz

Thank you for your attention

