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Gabor Frames

A sequence (ψl)l∈I in the Hilbert space H is called a frame, if
there exist positive constants A and B:

A‖f ‖2 ≤
∑
l∈I
|〈f , ψl〉|2 ≤ B‖f ‖2 ∀f ∈ H, (1)

C : H → `2 is the analysis operator defined by (Cf )l = 〈f , ψl〉

The adjoint C is the synthesis operator C∗(cl) =
∑

l clψl .
Frame operator is Sf = C∗Cf =

∑
l〈f , ψl〉ψl .
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Gabor Frames

Invertibility of S leads to existence of dual frames →
reconstruction.

Canonical dual frame: ψ̃l = S−1ψl for all l .

Reconstruction:

f =
∑
l

〈f , ψl〉ψ̃l =
∑
l

〈f , ψ̃l〉ψl .

For tight frames, the frame operator reduces to S = AI, where
I denotes the identity operator, and therefore S−1 = 1

A I. The

canonical tight frame (ψ̊l) is obtained by applying S−
1
2 to the

frame elements, i.e. ψ̊l = S−
1
2ψl for all l .
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Gabor Frames

For g ∈ L2(R) (the window), the short-time Fourier transform
(STFT) of f ∈ L2(R) is defined as

Vg (f ) (τ, ω) = 〈f ,MωTτg〉

translation operator Tτ f (t) = f (t − τ)
modulation operator Mωf (t) = f (t) e2πiωt . In other words:

Vg (f ) (τ, ω) =

∫
R
f (t) g(t − τ) e−2πiωtdt.
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Gabor Frames

For a (non-zero) window function g and parameters a, b > 0,
the set of time-frequency shifts of g

G(g , a, b) = {MbmTang : m, n ∈ Z}

is called a Gabor system, if G(g , a, b) is a frame, it is called a
Gabor frame.

Gabor analysis coefficients are sampling points of the STFT of
f with window g at the points (an, bm).

(Canonical) dual frame of a Gabor frame is again a Gabor
frame: generated by the dual window g̃ = S−1g and the same
lattice, i.e. the set of time-frequency points
{(an, bm) |m, n ∈ Z}.
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Rewriting the frame operator

If the analysis window g is (at least) in the Wiener space
W (R), then the frame operator

Sf =
∑
m,n

〈f ,MbmTang〉MbmTang

can be written as

Sf (x) =
1

b

∑
k,n

ḡ(x − n

b
− ak)g(x − ak)T n

b
f (x).

Immediately leads to a general existence result (given by
Walnut in 1992).

If g is compactly supported, and b is small enough, then S is
diagonal! (Daubechies et al., 1988)
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Frames are better than bases, but . . .

Advantages of (Gabor) frames in Music Signal Processing:

Good time-frequency resolution is possible

Fast processing (FFT based)

Redundancy offers sparse representations

Reconstruction straight-forward in painless case

but . . . what about the changing structures of signals?
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Frames are better than bases, but . . .

Figure: STFT with wide window
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Frames are better than bases, but . . .

Figure: STFT with narrow window
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The ”painless” case is adaptable!

Figure: STFT with adapted window
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The ”painless” case is adaptable!

Basic technique: in analogy to the classical painless situation
as suggested by Daubechies et al. (1988).

Essential ingredients:

1 Signal is localized at time- (or frequency-)positions n by
multiplication with a compactly supported (or limited
bandwidth, respectively) window functions gn.

2 The Fourier transform of the localized pieces is sampled
densely enough.

3 Adjacent windows overlap to avoid loss of information.

4 http://www.univie.ac.at/nonstatgab/
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The ”painless” case is adaptable!

For every n ∈ Z, let the function gn ∈ L2(R) be compactly
supported with supp(gn) ⊆ [cn, dn] and let bn be chosen such
that dn − cn ≤ 1

bn
. Then the frame operator

S : f 7→
∑
m,n

〈f , gm,n〉gm,n

of the system

gm,n(t) = gn(t) e2πimbnt , m, n ∈ Z,

is given by a multiplication operator of the form

Sf (t) =

(∑
n

1

bn
|gn(t)|2

)
f (t).
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The ”painless” case is adaptable!

Analog construction in the frequency domain leads to irregular
sampling over frequency and windows with adaptive bandwidth.

For a family of functions {hm}m∈Z define atoms of the form:

hm,n(t) = hm(t − nam). (2)

Therefore ĥm,n(ν) = ĥm(ν) · e−2πinamν and the analysis
coefficients may be written as

cm,n = 〈f , hm,n〉 = 〈f̂ ,F(Tnamhm)〉 = F−1
(
f̂ · ĥm

)
(nam).

→ situation analog to before, up to a Fourier transform.
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)
(nam).

→ situation analog to before, up to a Fourier transform.

Dörfler, Monika http://nuhag.eu



Combining
mathematics
and music -
the starting
point

Time-
frequency
analysis

Gabor frames

The Walnut
representation
and the painless
case

Nonstationarity
in Gabor frames

Example
applications

Quilted frames
and local
adaptation

The ”painless” case is adaptable!

Analog construction in the frequency domain leads to irregular
sampling over frequency and windows with adaptive bandwidth.
For a family of functions {hm}m∈Z define atoms of the form:

hm,n(t) = hm(t − nam). (2)
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The ”painless” case is adaptable!

In general, the inversion of S can be numerically unfeasible, in
the special ”painless” case, the invertibility of the frame
operator is easy to check and inversion is a simple
multiplication:
gm,n forms a frame for L2(R) if and only if

∑
n

1
bn
|gn(t)|2 ' 1.

Canonical dual frame elements are given by:

g̃m,n(t) =
gn(t)∑

l
1
bl
|gl(t)|2

e2πimbnt , (3)
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Exploring non-stationarity on the frequency side

Figure: STFT with adapted window
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Figure: STFT with adapted window

Dörfler, Monika http://nuhag.eu



Combining
mathematics
and music -
the starting
point

Time-
frequency
analysis

Gabor frames

The Walnut
representation
and the painless
case

Nonstationarity
in Gabor frames

Example
applications

Quilted frames
and local
adaptation

The ”painless” case is adaptable!

→ adaptivity in BOTH domains would be nice.
Problems: missing compactness, interpretation,..
Encouraging result: characterization by TF-shifts of operators,
but NO strict locality!
Discrete version, new concept: Quilted frames
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The idea and structure of quilted frames

Figure: Partition in time-frequency and resulting quilted lattice
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The idea and structure of quilted frames

Perspecitves:

Implementation of quilted frames via ”sliced nonstationary
Gabor frames”

Adaptation via (structured) sparsity constraints

Dictionary learning methods

Thanks for listening!
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