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Gabor frames

Frame operator, Walnut representation, painless case
Nonstationary in Gabor frames

Example applications

Perspectives: Quilted frames
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A sequence (1), in the Hilbert space H is called a frame, if
there exist positive constants A and B:

Gabor frames

AlIFIZ <D KF P < BJIF|I> VFeH, (1)

lel
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AlIFIZ <D KF P < BJIF|I> VFeH, (1)
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A sequence (1), in the Hilbert space H is called a frame, if
there exist positive constants A and B:

AlFIP <> IFw) P < BlfIP Ve, (1)
lel

C: H — (2 is the analysis operator defined by (Cf), = (f, )
The adjoint C is the synthesis operator C*(cj) = >, cji.
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A sequence (1), in the Hilbert space H is called a frame, if
there exist positive constants A and B:

AlFIP <D KF 9P < B|fIP v e, (1)
lel
C: H — (2 is the analysis operator defined by (Cf), = (f, )
The adjoint C is the synthesis operator C*(cj) = >, cji.
Frame operator is Sf = C*Cf =Y (f, )9
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Invertibility of S leads to existence of dual frames —
reconstruction.

Gabor frames
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Invertibility of S leads to existence of dual frames —
reconstruction.
Canonical dual frame: 1)y = S~ for all /.
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Gabor frames

Invertibility of S leads to existence of dual frames —
reconstruction.

Canonical dual frame: 1; = S~ for all /.
Reconstruction:

f= Z(fﬂ/}/)?/;/ = Z<fﬂ/~1/>¢/-

/ /

For tight frames, the frame operator reduces to S = Al, where
I denotes the identity operator, and therefore S™1 = 1. The

to the

m\»—t)>‘

canonical tight frame (¢);) is obtained by applying S~
frame elements, i.e. 1[1/ = S_%m for all /.
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For g € L?(R) (the window), the short-time Fourier transform
(STFT) of f € L?(R) is defined as

Gabor frames Vg (f) (T, w) = <f, MwTTg>

translation operator T.f (t) =f (t — 1)
modulation operator M, f (t) = f (t) e2™“t. In other words:

Vg (F) (7, w) = /R F(1) gt —7) e 2"t .
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For a (non-zero) window function g and parameters a, b > 0,
the set of time-frequency shifts of g

G(g,a,b) = {Mp,Tang : m,n € Z}

Gabor frames

is called a Gabor system, if G(g, a, b) is a frame, it is called a
Gabor frame.
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For a (non-zero) window function g and parameters a, b > 0,
the set of time-frequency shifts of g

G(g,a,b) = {Mp,Tang : m,n € Z}

is called a Gabor system, if G(g, a, b) is a frame, it is called a
Gabor frame.

Gabor analysis coefficients are sampling points of the STFT of
f with window g at the points (an, bm).
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For a (non-zero) window function g and parameters a, b > 0,
the set of time-frequency shifts of g

G(g,a,b) = {Mp,Tang : m,n € Z}

is called a Gabor system, if G(g, a, b) is a frame, it is called a
Gabor frame.

Gabor analysis coefficients are sampling points of the STFT of
f with window g at the points (an, bm).

(Canonical) dual frame of a Gabor frame is again a Gabor
frame: generated by the dual window § = S~'g and the same
lattice, i.e. the set of time-frequency points

{(an,bm)|m,n € Z}.
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N Rewriting the frame operator
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If the analysis window g is (at least) in the Wiener space
W(R), then the frame operator

Sf = Z(fa Mmeang>Mmeang

m,n

The Walnut
representation

and the painless can be Written as

case

Sf(x) = % Y a(x - g — ak)g(x — ak) T2 f(x).
k,n
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m,n
The Walnut

representation

and the painless can be Written as

case

Sf(x) = % Y a(x - g — ak)g(x — ak) T2 f(x).
k,n

Immediately leads to a general existence result (given by
Walnut in 1992).
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If the analysis window g is (at least) in the Wiener space
W(R), then the frame operator

Sf = Z(fa Mmeang>Mmeang

m,n
The Walnut

representation

and the painless can be Written as

case

Sf(x) = % Y a(x - g — ak)g(x — ak) T2 f(x).
k,n

Immediately leads to a general existence result (given by
Walnut in 1992).

If g is compactly supported, and b is small enough, then S is
diagonal! (Daubechies et al., 1988)
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N Frames are better than bases, but ...

Advantages of (Gabor) frames in Music Signal Processing:

m Good time-frequency resolution is possible

The Walnut
s m Fast processing (FFT based)

m Redundancy offers sparse representations
m Reconstruction straight-forward in painless case

but ... what about the changing structures of signals?
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N Frames are better than bases, but ...
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N The "painless” case is adaptable!
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N The "painless” case is adaptable!
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Basic technique: in analogy to the classical painless situation
as suggested by Daubechies et al. (1988).

Nonstationarity
in Gabor frames
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N The "painless” case is adaptable!
NuHNG

Basic technique: in analogy to the classical painless situation
as suggested by Daubechies et al. (1988).
Essential ingredients:

Signal is localized at time- (or frequency-)positions n by
multiplication with a compactly supported (or limited

onstetivnsli ] bandwidth, respectively) window functions g,.

The Fourier transform of the localized pieces is sampled
densely enough.

Adjacent windows overlap to avoid loss of information.

O http://www.univie.ac.at/nonstatgab/
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N The "painless” case is adaptable!
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For every n € Z, let the function g, € L?(R) be compactly
supported with supp(g,) C [cn, dn] and let b, be chosen such
that d, — ¢, < bin. Then the frame operator

S:f— Z(f,gm,n>gm,n

m,n

Nonstationarity Of the system

in Gabor frames

gm.n(t) = gn(t) e?™imbt ' m ne 7,

is given by a multiplication operator of the form

Sf(1) = (Zblnrgn(mz) (o)

n
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N The "painless” case is adaptable!
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Analog construction in the frequency domain leads to irregular
sampling over frequency and windows with adaptive bandwidth.

Nonstationarity
in Gabor frames
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N The "painless” case is adaptable!
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Analog construction in the frequency domain leads to irregular
sampling over frequency and windows with adaptive bandwidth.
For a family of functions {hy,}mez define atoms of the form:

hm.n(t) = hm(t — nam). (2)
T Therefore h/,;,(z/) = i/7,\n(1/) - e~2minamV and the analysis
coefficients may be written as

Cmn = <f7 hm,n> = <?7~’T_‘(Tnamhm)>
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N The "painless” case is adaptable!
NuHNG

Analog construction in the frequency domain leads to irregular
sampling over frequency and windows with adaptive bandwidth.
For a family of functions {hy,}mez define atoms of the form:

hm.n(t) = hm(t — nam). (2)

Nonstationarity

R Therefore hy, p(v) = hm(v) - €271 and the analysis
coefficients may be written as

cmn = (Fy hmn) = (F, F(Tnap hm)) = F~ (f )(nam)

— situation analog to before, up to a Fourier transform.
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N The "painless” case is adaptable!
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In general, the inversion of S can be numerically unfeasible, in
the special " painless”’ case, the invertibility of the frame
operator is easy to check and inversion is a simple
multiplication:

gm.n forms a frame for L?(R) if and only if 3, bin|g,,(t)|2 ~ 1.

Nonstationarity
in Gabor frames
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N The "painless” case is adaptable!
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In general, the inversion of S can be numerically unfeasible, in
the special " painless”’ case, the invertibility of the frame
operator is easy to check and inversion is a simple
multiplication:

e " gm.n forms a frame for L?(R) if and only if 3, bin|g,,(t)|2 ~ 1.
I Canonical dual frame elements are given by:

~ n t Tim
Emn(t) = — &) omimbne 3)

> b lent)?

Dérfler, Monika http://nuhag.eu



N The "painless” case is adaptable!
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Ligeti — dB—scaled Gabor transform Ligeti — dB-scaled NSGT
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Exploring non-stationarity on the frequency side ®

ligeti - dB-scaled Gabor transform ligeti - dB-scaled CQ-NSGT
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Exploring non-stationarity on the frequency side ®
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Exploring non-stationarity on the frequency side ®

Redmanns - dB-scaled Gabor transform  Redmanns - dB-scaled CQ-NSGT

[ET
applications

— —
N N
T T
= =
> >
1) 2]
< <
[) [)
=] =]
= =4
9] 9]
= =
= =

Déorfler, Monika http://nuhag.eu



[ET
applications

frequency (Hz)

Dérfler, Monika

Piano chord - dB-scaled CQ-NSGT

time (seconds)
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Piano chord (2 semitone transpose) — dB-scaled CQ-NSGT Piano chord (5 semitone transpose) — dB-scaled CQ-NSGT
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Glockenspiel - dB-scaled CQ-NSGT Glockenspiel (masked) — dB-scaled CQ-NSGT
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Glockenspiel component — dB-scaled CQ-NSGT

[ET
applications

frequency (Hz)
frequency (Hz)

2 3 4 2 3 4
time (seconds) time (seconds)

Déorfler, Monika http://nuhag.eu



N The "painless” case is adaptable!
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So , are we happy yet?
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Redmanns - dB-scaled Gabor transform  Redmanns - dB-scaled CQ-NSGT
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N The "painless” case is adaptable!
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— adaptivity in BOTH domains would be nice.
Problems: missing compactness, interpretation,..

Encouraging result: characterization by TF-shifts of operators,
Lo but NO strict locality!

applications Discrete version, new concept: Quilted frames
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N The idea and structure of quilted frames
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N The idea and structure of quilted frames
NuHNG

Perspecitves:
m Implementation of quilted frames via "sliced nonstationary
Gabor frames”
m Adaptation via (structured) sparsity constraints

m Dictionary learning methods

Quilted frames
and local
adaptation
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N The idea and structure of quilted frames
NuHNG

Perspecitves:
m Implementation of quilted frames via "sliced nonstationary
Gabor frames”
m Adaptation via (structured) sparsity constraints

m Dictionary learning methods

Quilted frames
and local
adaptation

Thanks for listening!
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